

Fiche exercices

EXERCICE 1

Déterminer les entiers naturels n tels que le reste de la division euclidienne de n par 20 est 7 et que le reste de la division euclidienne de n par 44 est 6.

EXERCICE 2

- 1. On considère l'équation (E): 8x + 5y = 1, où (x, y) est un couple de nombres entiers relatifs.
- a. Donner une solution particulière de l'équation (E).
- b. Résoudre l'équation (E).
- 2. Soit N un nombre naturel tel qu'il existe un couple (a;b) de nombres entiers vérifiant :

$$\begin{cases} N = 8a + 1 \\ N = 5b + 2 \end{cases}$$

- a. Montrer que le couple (a;-b) est solution de (E).
- b. Quel est le reste, dans la division de N par 40 ?
- 3. a. Résoudre l'équation 8x + 5y = 100, où (x; y) est un couple de nombres entiers relatifs.
- b. Au VIII e siècle, un groupe composé d'hommes et de femmes a dépensé 100 pièces de monnaie dans une auberge. Les hommes ont dépensé 8 pièces chacun et les femmes 5 pièces chacune. Combien pouvait-il y avoir d'hommes et de femmes dans le groupe ?

Bac TS Asie 1999

EXERCICE 3

Dans une auberge, un groupe d'hommes et de femmes moins nombreuses a dépensé 1000 pièces. Les hommes ont payé 19 pièces et les femmes 13 pièces. Combien y avait-il d'hommes et de femmes dans le groupe?

EXERCICE 4

Soit l'équation (1) d'inconnue rationnelle $x: 78x^3 + ux^2 + vx - 14 = 0$ où u et v sont des entiers relatifs.

- 1. On suppose dans cette question que $\frac{14}{39}$ est solution de l'équation (1).
- a. Prouver que les entiers relatifs u et v sont liés par la relation: 14u + 39v = 1129.
- b. Utiliser l'algorithme d'Euclide, en détaillant les diverses étapes du calcul, pour trouver un couple (x; y) d'entiers relatifs vérifiant l'équation 14x + 39y = 1.

Vérifier que le couple (-25;9) est solution de cette équation.

- c. En déduire un couple $(u_0; v_0)$ solution particulière de l'équation 14u + 39v = 1129.
- Donner la solution générale de cette équation c'est-à-dire l'ensemble des couples (u; v) d'entiers relatifs qui la vérifient.
- d. Déterminer, parmi les couples (u; v) précédents, celui pour lequel le nombre u est l'entier naturel le plus petit possible.
- 2. a. Décomposer 78 et 14 en facteurs premiers.

En déduire, dans IN, l'ensemble des diviseurs de 78 et l'ensemble des diviseurs de 14.

b. Soit $\frac{P}{Q}$ une solution rationnelle de l'équation (1) d'inconnue $x : 78 x^3 + ux^2 + vx - 14 = 0$ où u et v sont des entiers relatifs.

Montrer que si P et Q sont des entiers relatifs premiers entre eux, alors P divise 14 et Q divise 78.

Équations du type : ax+by=c

c. En déduire le nombre de rationnels, non entiers, pouvant être solutions de l'équation (1) et écrire, parmi ces rationnels, l'ensemble de ceux qui sont positifs.

Bac TS Guyane-Antilles septembre 2003

EXERCICE 5

Pour tout entier naturel n non nul, on considère les nombres $a_n = 4 \times 10^n - 1$ $b_n = 2 \times 10^n - 1$ $c_n = 2 \times 10^n + 1$

- 1. a. Calculer $a_1, b_1, c_1, a_2, b_2, c_2, a_3, b_3, c_3$
- b. Combien les écritures décimales des nombres a_n et c_n ont-elles de chiffres ?

Montrer que a_n et c_n sont divisibles par 3.

- c. Montrer, en utilisant la liste des nombres premiers inférieurs à 100 donnée ci-dessous, que b_3 est premier.
- d. Montrer que, pour tout entier naturel non nul n, $b_n \times c_n = a_{2n}$.

En déduire la décomposition en produit de facteurs premiers de a_6 .

e. Montrer que \mathscr{P} gcd $(b_n, c_n) = \mathscr{P}$ gcd $(c_n, 2)$.

En déduire que b_n et c_n sont premiers entre eux.

2. On considère l'équation : (1) $b_3x + c_3y = 1$

d'inconnues les entiers relatifs x et y.

- a. Justifier le fait que (1) possède au moins une solution.
- b. Appliquer l'algorithme d'Euclide aux nombres c_3 et b_3 ; en déduire une solution particulière de (1).
- c. Résoudre l'équation (1).

Liste des nombres premiers inférieurs à 100 :

2;3;5;7;11;13;17;19;23;29;31;37;41;43;47;53;59;61;67;71;73;79;83;89;97.

BAC TS Métropole juin 1999

EXERCICE 6

Les trois questions de cet exercice sont indépendantes.

- 1. a) Déterminer l'ensemble des couples (x, y) de nombres entiers relatifs, solution de l'équation (E): 8x-5y=3.
- b) Soit m un nombre entier relatif tel qu'il existe un couple (p,q) de nombres entiers vérifiant m=8 p+1 et m=5 q+4

Montrer que le couple (p, q) est solution de l'équation (E) et en déduire que $m \equiv 9 \pmod{40}$.

- c) Déterminer le plus petit de ces nombres entiers m supérieurs à 2 000.
- 2. a) Démontrer que pour tout nombre entier naturel k on a : $2^{3k} \equiv 1 \pmod{7}$.
- b. Quel est le reste dans la division euclidienne de 2^{2009} par 7?
- 3. Dans cette question, toute trace de recherche, même incomplète, ou d'initiative, même non fructueuse, sera prise en compte dans l'évaluation.

Soient a et b deux nombres entiers naturels inférieurs ou égaux à 9 avec $a \neq 0$.

On considère le nombre $N = a \times 10^3 + b$. On rappelle qu'en base 10 ce nombre s'écrit sous la forme $N = \overline{a00b}$. On se propose de déterminer parmi ces nombres entiers naturels N ceux qui sont divisibles par 7.

- a) Vérifier que $10^3 \equiv -1 \pmod{7}$.
- b) En déduire tous les nombres entiers N cherchés.

BAC TS Métropole 2009

CORRECTION

EXERCICE 1

$$n=20 q+7$$
 avec $q \in \mathbb{N}$
 $n=44 q'+6$ avec $q' \in \mathbb{N}$

$$20 q + 7 = 44 q' + 6$$

$$44 q' - 20 q = 1$$

$$\mathcal{P}\gcd(20;44)=4$$

Or 1 n'est pas divisible par 4.

Conclusion: il n'existe pas de solution au problème.

EXERCICE 2

1. a.

- On peut trouver de manière intuitive le couple (2;-3) comme solution: $8\times2+5\times(-3)=1$
- Méthode générale:

on pose:

$$a = 8$$
 $b = 5$

a	b	Quotient	reste
8	5	1	3
5	3	1	2
3	2	1	1
2	1	2	0

$$a=b\times 1+3$$
 donc: $3=a-b$

$$b = 3 \times 1 + 2$$

$$b = (a-b) \times 1 + 2$$
 donc: $2 = b-a+b=-a+2b$

$$3 = 2 \times 1 + 1$$

$$a-b=(-a+2b)+1$$
 donc: $1=a-b+a-2b=2a-3b$

On a:
$$8 \times 2 + 5 \times (-3) = 1$$

Le couple (2;-3) est <u>une solution particulière de (E)</u>.

b.
$$8x + 5y = 1$$

$$\Leftrightarrow 8x + 5y = 8 \times 2 + 5 \times (-3)$$

$$\Leftrightarrow 8(x-2)=5\times(-y-3)$$

8 divise
$$5(-y-3)$$

$$\mathcal{P}$$
gcd(8;5)=1

D'après le théorème de Gauss, 8 divise
$$(-y-3)$$

Donc il existe $k \in \mathbb{Z}$ tel que -y-3=8k

Pour tout $k \in \mathbb{Z}$ si -y-3=8k, alors:

$$8(x-2)=5(-y-3) \Leftrightarrow 8(x-2)=5\times 8k \Leftrightarrow x-2=5k$$

Conclusion:

Pour tout
$$k \in \mathbb{Z}$$
, $-y-3=8k$ et $x-2=5k$

$$\begin{cases} x = 5k + 2 \\ v = -8k - 3 \end{cases} \quad k \in \mathbb{Z}$$

$$S = \{(5k+2; -8k-3); k \in \mathbb{Z}\}$$

2. a.

$$N = 8a + 1 = 5b + 2$$

$$8a - 5b = 1$$

Donc, le couple (a;-b) est solution de l'équation (E)

b. (a;-b) est solution de l'équation (E) donc, il existe $k \in \mathbb{Z}$ tel que:

$$a=5 k+2 \text{ et } -b=-8 k-3$$

Donc:

$$N=8(5k+2)+1=40k+17$$

$$N=5(8k+3)+2=40k+17$$

Le reste de la division de N par 40 est 17.

3. a. On choisit comme solution particulière: (200;-300)

Avec le même raisonnement qu'au 1. b), on obtient comme solution:

$$S = \{(5K + 200; -8K - 300); K \in \mathbb{Z}\}$$

b.

On appelle X le nombre d'hommes. $X \in \mathbb{N}$

On appelle Y le nombre de femmes. $Y \in \mathbb{N}$

$$8X + 5Y = 100$$

d'après la question précédente:

$$X = 5K + 200 \text{ et } Y = -8K - 300 \text{ avec } K \in \mathbb{Z}$$

On doit avoir $X \ge 0$

$$5K + 200 \ge 0$$

$$K \ge -40$$

On doit aussi avoir: $Y \ge 0$

$$-8K - 300 \ge 0$$

$$K ≤ -37.5$$

K est un entier donc $K \le -38$

Conséquence: $-40 \le K \le -38$

Pour K = -40

X = 0; Y = 20: 0 homme; 20 femmes

Pour K = -39

X = 5; Y = 12 : 5 hommes; 12 femmes

Pour K = -38

X = 10; Y = 4 : 10 hommes; 4 femmes

Si on comprend, qu'il y a au moins un homme, il y a 2 possibilités: <u>5 hommes</u> et <u>12 femmes</u> ou <u>10 hommes</u> et <u>4 femmes</u>.

EXERCICE 3

On appelle *x* le nombre d'hommes.

 $x \in \mathbb{N}$

On appelle *y* le nombre de femmes.

 $y \in \mathbb{N}$

19x + 13y = 1000

on pose: a = 19 et b = 13

а	b	Quotient	reste
19	13	1	6
13	6	2	1
6	1	6	0

$$a = b \times 1 + 6$$
 donc: $6 = a - b$

$$b = 6 \times 2 + 1$$

$$b = (a - b) \times 2 + 1$$

$$b=2a-2b+1$$
 donc: $1=-2a+3b$

On a:
$$19 \times (-2) + 13 \times 3 = 1$$

Donc:
$$19 \times (-2000) + 13 \times 3000 = 1000$$

Le couple (-2000;3000) est une solution particulière de l'équation 19x + 13y = 1000.

$$19x + 13y = 1000$$

$$\Leftrightarrow$$
 19 x + 13 y = 19 × (-2000) + 13 × 3000

$$\Leftrightarrow 19(x+2000)=13\times(-y+3000)$$

19 divise
$$13(-y + 3000)$$

$$\mathcal{P}$$
gcd(19;13)=1

D'après <u>le théorème de Gauss</u>, 19 divise (-y + 3000)

Donc il existe $k \in \mathbb{Z}$ tel que -y + 3000 = 19 k

Pour tout $k \in \mathbb{Z}$ si -y + 3000 = 19 k, alors:

$$19(x+2000)=13(-y+3000)\Leftrightarrow (x+2000)=13\times19k \Leftrightarrow x+2000=13k$$

Conclusion:

Pour tout
$$k \in \mathbb{Z}$$
, $-y + 3000 = 19 k$ et $x + 2000 = 13 k$

$$\begin{cases} x = 13 \, k - 2000 \\ y = -19 \, k + 3000 \end{cases} k \in \mathbb{Z}$$

On doit aussi avoir $x > y \ge 0$ et $x \in \mathbb{N}$, $y \in \mathbb{N}$

$$v \ge 0$$

$$\Leftrightarrow$$
 -19 *k* + 3000 \geqslant 0

$$\Leftrightarrow$$
 -19 $k \geqslant$ -3000

$$\Leftrightarrow k \leq \frac{3000}{10}$$

$$\Leftrightarrow 13k - 2000 > -19k + 3000$$

$$\Leftrightarrow 13k + 19k > 2000 + 3000$$

$$\Leftrightarrow$$
 32 k > 5000

$$\Leftrightarrow k > \frac{5000}{32}$$

$$\Leftrightarrow k \ge 157$$

On obtient k = 157.

$$x=13\times157-2000=41$$

$$y = -19 \times 157 + 3000 = 17$$

Il y a 41 hommes et 17 femmes.

EXERCICE 4

1. a.

est solution de l'équation (1), donc:

$$78 \times \frac{14^{3}}{39^{3}} + u \times \frac{14^{2}}{39^{2}} + v \times \frac{14}{39} - 14 = 0$$

$$2 \times \frac{14^{3}}{39^{2}} + u \times \frac{14^{2}}{39^{2}} + v \times \frac{14}{39} - 14 = 0$$

$$2 \times 14^{3} + u \times 14^{2} + v \times 14 \times 39 - 14 \times 39^{2} = 0$$

$$2 \times 14^{2} + u \times 14 + v \times 39 - 39^{2} = 0$$

$$14u + 39v = 1129$$
b.

а	b	Quotient	reste
39	14	2	11
14	11	1	3
11	3	3	2
3	2	1	1
2	1	2	0

$$a=b\times 2+11$$
 donc: $11=a-2b$
 $b=11\times 1+3$
 $b=(a-2b)\times 1+3$
 $b=a-2b+3$ donc: $3=-a+3b$
 $11=3\times 3+2$
 $a-2b=(-a+3b)\times 3+2$
 $a-2b=-3a+9b+2$ donc: $2=4a-11b$

$$3=2\times1+1$$

 $-a+3b=(4a-11b)\times1+1$
 $-a+3b=4a-11b+1$ done: $1=-5a+14b$

On a:
$$39 \times (-5) + 14 \times 14 = 1$$

 $14 \times 14 + 39 \times (-5) = 1$

Donc:

Le couple (14;-5) est <u>une solution particulière</u> de l'équation 14x + 39y = 1.

$$14 \times (-25) + 39 \times 9 = 1$$

Donc:

Le couple (-25;9) est <u>une solution particulière</u> de l'équation 14x + 39y = 1.

c.

Le couple (14;-5) est une solution particulière de l'équation 14x + 39y = 1.

 $14 \times 1129 = 15806$ $-5 \times 1129 = -5645$

Donc:

Le couple (15806;-5645) est une solution particulière de l'équation 14x + 39y = 1129.

Le couple (-25;9) est une autre solution particulière de l'équation 14x + 39y = 1.

$$-25 \times 1129 = -28225$$

 $9 \times 1129 = 10161$

Donc:

Le couple (-28225;10161) est une autre solution particulière de l'équation 14x + 39y = 1129.

$$14u + 39v = 1129$$

$$\Leftrightarrow$$
 14 *u* + 39 *v* = 14 *u*₀ + 39 *v*₀

$$\Leftrightarrow 14(u-u_0)=39\times(-v+v_0)$$

14 divise $39(-v + v_0)$ \mathcal{P} gcd(14;39)=1

D'après <u>le théorème de Gauss</u>, 14 divise $(-v + v_0)$

Donc il existe $k \in \mathbb{Z}$ tel que $(-v + v_0) = 14 k$

Pour tout $k \in \mathbb{Z}$ si $-v + v_0 = 14k$, alors:

$$14(u-u_0)=39\times(-v+v_0) \Leftrightarrow 14(u-u_0)=39\times14 \ k \Leftrightarrow u-u_0=39 \ k$$

Conclusion:

Pour tout $k \in \mathbb{Z}$, $u - u_0 = 39 k$ et $-v + v_0 = 14 k$

$$\begin{bmatrix} u = 39 k + u_0 \\ v = -14 k + v_0 \end{bmatrix} k \in \mathbb{Z}$$

Si $u_0 = 15806$ et $v_0 = -5645$

$$15806 = 39 \times 405 + 11$$

$$u = 39 k + 39 \times 405 + 11$$

$$u=39(k+405)+11$$

Pour k = -405, on obtient u = 11

On a alors:

$$v = -14 \times (-405) - 5645$$

$$v = 5670 - 5645$$

$$v = 25$$

On obtient le couple (11;45)

$$Si u_0 = -28225 \text{ et } v_0 = 10161$$

$$-28225 = 39 \times (-724) + 11$$

$$u = 39 k + 39 \times (-724) + 11$$

$$u = 39(k - 724) + 11$$

Pour k = 724, on obtient u = 11

On a alors:

$$v = -14 \times (724) + 10161$$

$$v = -10136 + 10161$$

$$v = 25$$

On obtient aussi <u>le couple (11;45)</u>

2. a.

$$78 = 2 \times 3 \times 13$$

$$78 = 2 \times 3 \times 13$$
 Il y a $2 \times 2 \times 2 = 8$ diviseurs de 78 dans | N
D₇₈={1;2;3;6;13;26;39;78}

$$14 = 2 \times 7$$

Il y a $2\times2=4$ diviseurs de 14 dans IN

 $D_{14} = \{1; 2; 7; 14\}$

b.

 $\frac{P}{O}$ est solution de l'équation (1), donc:

$$78 \times \frac{P^{3}}{Q^{3}} + u \times \frac{P^{2}}{Q^{2}} + v \times \frac{P}{Q} - 14 = 0$$

$$78 \times P^{3} + uQ \times P^{2} + vQ^{2} \times P - 14 \times Q^{3} = 0$$

$$78 P^{3} = Q(-uP^{2} - vPQ + 14Q^{2})$$
(2)

$$(-uP^2-vPQ+14Q^2)\in\mathbb{Z}$$

 $\mathscr{P}\gcd(P;Q)=1 \text{ donc } \mathscr{P}\gcd(P^3;Q)=1$

Q divise $78 P^3$ $\mathcal{P}gcd(P^3;Q)=1$

D'après <u>le théorème de Gauss</u>: Q divise 78

De même, d'après l'expression (2), on a: $78 \times P^3 + uQ \times P^2 + vQ^2 \times P - 14 \times Q^3 = 0$ $14 Q^3 = P(78 P^2 + uQP + vQ^2)$

P divise $14Q^3$ $\mathcal{P}gcd(P;Q^3)=1$

D'après le théorème de Gauss: P divise 14

c.

On rappelle que:

 $D_{14} = \{1; 2; 7; 14\} \text{ et } D_{78} = \{1; 2; 3; 6; 13; 26; 39; 78\}$

- Si <u>P=1</u> alors tout diviseur de 78 est premier avec *P*. Pour *Q*, il y a 7 possibilités. (on exclue *Q*=1 pour lequel on obtient l'entier 1). On a donc: $\frac{1}{2}$; $\frac{1}{3}$; $\frac{1}{6}$; $\frac{1}{13}$; $\frac{1}{26}$; $\frac{1}{39}$; $\frac{1}{78}$
- Si P=2 alors pour Q il faut choisir un diviseur de 78 impair et différent de 1. Il y a 3 possibilités. On a donc: 2/3; 2/13; 2/39
- Si P=7 alors tout diviseur de 78 est premier avec P. Pour Q, il y a 7 possibilités. (on exclue Q=1 pour lequel on obtient l'entier 1). On a donc: $\frac{7}{2}$; $\frac{7}{3}$; $\frac{7}{6}$; $\frac{7}{13}$; $\frac{7}{26}$; $\frac{7}{78}$
- Si <u>P=14</u> alors pour Q il faut choisir un diviseur de 78 impair et différent de 1. Il y a 3 possibilités. On a donc: ¹⁴/₃; ¹⁴/₁₃; ¹⁴/₃₉

On a donc 20 rationnels positifs, non entiers, pouvant être solutions de l'équation (1). (Il y a aussi 20 rationnels négatifs)

EXERCICE 5

1. a. $a_1 = 4 \times 10^1 - 1 = 39$ $a_2 = 4 \times 10^{i2n} - 1 = 399$ $a_3 = 4 \times 10^3 - 1 = 3999$ $a_1 = 2 \times 10^1 - 1 = 19$ $a_2 = 2 \times 10^i \cdot 2 - 1 = 199$ $a_3 = 2 \times 10^3 - 1 = 1999$ $a_4 = 2 \times 10^1 + 1 = 21$ $a_5 = 2 \times 10^i \cdot 2 + 1 = 201$ $a_7 = 4 \times 10^3 - 1 = 1999$ $a_7 = 2 \times 10^3 + 1 = 2001$ b. $a_7 = 4 \times 10^3 - 1 = 1999$ $a_7 = 2 \times 10^3 + 1 = 2001$ b. $a_7 = 4 \times 10^3 - 1 = 1999$

Équations du type : ax+by=c

- pour a_n le premier chiffre est 3 et les autres chiffres sont 9 donc la somme de ses chiffres est divisible par 3.
- pour c_n le premier chiffre est 2, le dernier est 1 et les autres chiffres sont nuls donc la somme de ses chiffres est divisible par 3.

On peut aussi utiliser les congruences.

```
10 \equiv 1(3)
```

Pour tout $n \in \mathbb{N}$ $10^n \equiv 1^n (n)$

$$10^n \equiv 1(n)$$

$$a_n = 4 \times 10^n - 1$$
, donc:

$$a_n \equiv 4 \times 1 - 1(3)$$

$$a_n \equiv 3(3)$$

$$a_n \equiv 0(3)$$

Donc a_n est divisible par 3.

$$c_n = 2 \times 10^n + 1$$
, donc:

$$c_n \equiv 2 \times 1 + 1(3)$$

$$c_n \equiv 3(3)$$

$$c_n \equiv 0(3)$$

Donc c_n est divisible par 3.

c.

$$b_3 = 2 \times 10^3 - 1 = 1999$$

On vérifie que b_3 n'est pas divisible par les nombres premiers dont le carré est inférieur à 1999.

On vérifie donc pour les nombres: 2; 3; 5; 7; 11; 13; 17; 19; 23; 29; 31; 37; 41; 43 (car $47^2=2209>1999$) b_3 n'est divisible par aucun de ses nombres, donc b_3 est un nombre premier.

d.

$$b_n \times c_n$$

$$=(2\times10^{n}-1)\times(2\times10^{n}+1)$$

$$=(2\times10^n)^2-1^2$$

$$=4\times10^{2n}-1$$

$$=a_{2n}$$

$$a_6 = b_3 \times c_3$$

$$b_3$$
 = 1999 et b_3 est premier

$$c_3 = 2001$$
 et c_3 est divisible par 3: 2001 = 3×667 = 3×23×29

D'où,
$$a_6 = 3 \times 23 \times 29 \times 1999$$

e.

• Soit d un diviseur commun de b_n et c_n alors d est un diviseur commun de c_n et $c_n - b_n$

Or
$$c_n - b_n = (2 \times 10^n + 1) - (2 \times 10^n - 1) = 2$$

Donc d est un diviseur commun de c_n et 2.

• Soit d un diviseur commun de c_n et 2 alors d est un diviseur commun de c_n et c_n-2

Or
$$c_n - 2 = 2 \times 10^n + 1 - 2 = 2 \times 10^n - 1 = b_n$$

Donc d est un diviseur commun de b_n et c_n

Conséquence:

$$\mathscr{P}_{gcd}(b_n, c_n) = \mathscr{P}_{gcd}(c_n, 2).$$

$$c_n$$
 est un nombre impair donc \mathscr{P} gcd $(c_n, 2) = 1$ donc \mathscr{P} gcd $(b_n, c_n) = 1$.

Par suite, b_n et c_n sont premiers entre eux.

Remarque:

а	b	Quotient	reste
$2 \times 10^{n} + 1$	$2\times10^n-1$	1	2
$2\times10^{n}-1$	2	10 ⁿ -1	1
2	1	2	0

Donc b_n et c_n sont premiers entre eux.

2.

a.

 b_3 et c_3 sont premiers entre eux. Le théorème de Bezout permet d'affirmer qu'il existe deux entiers relatifs x et y tels que $b_3x + c_3y = 1$

b.

c_3	b_3	Quotient	reste
2001	1999	1	2
1999	2	999	1
2	1	2	0

$$c_3 = b_3 \times 1 + 2 \text{ donc } 2 = c_3 - b_3$$

 $b_3 = 2 \times 999 + 1$
 $b_3 = (c_3 - b_3) \times 999 + 1 \text{ donc } 1 = 1000 b_3 - 999 c_3$

Le couple (1000;-999) est une solution particulière de l'équation (1)

c.

1999
$$x$$
+ 2001 y =1
⇔ 1999 x + 2001 y =1000×1999−999×2001
⇔ 1999 $(x$ -1000)=2001× $(-y$ -999)
1999 divise 2001 $(-y$ -999)
 \mathscr{P} gcd $(1999;2001)$ =1

D'après le théorème de Gauss, 1999 divise (-y-999)

Donc il existe $k \in \mathbb{Z}$ tel que -y-999=1999 k

Pour tout $k \in \mathbb{Z}$ si -y-999=1999 k, alors:

$$1999(x-1000) = 2001(-y-999) \Leftrightarrow 1999(x-1000) = 2001 \times 1999 k \Leftrightarrow x-1000 = 2001 k$$

Conclusion:

Pour tout
$$k \in \mathbb{Z}$$
, $-y-999=1999 k$ et $x-1000=2001 k$
$$\begin{cases} x=2001 k+1000 \\ y=-1999 k-999 \end{cases} k \in \mathbb{Z}$$

$$S = \{ (2001 k+1000; -1999 k-999); k \in \mathbb{Z} \}$$

EXERCICE 6

1. a)

8 et 5 sont premiers entre eux et on remarque que le couple (1;1) est une solution particulière de l'équation car $8\times1-5\times1=3$

$$8x-5y=3$$

$$\Leftrightarrow 8x-5y=8\times1-5\times1$$

$$\Leftrightarrow 8(x-1)=5(y-1)$$

8 divise
$$5(y-1)$$

 \mathcal{P} gcd(8;5)=1

D'après le théorème de Gauss 8 divise (v-1)

Il existe $k \in \mathbb{Z}$ tel que y-1=8k

$$8(x-1)=5(y-1)$$

$$\Leftrightarrow 8(x-1)=5\times 8k$$
Soit
$$\begin{cases} x=5k+1 \\ y=8k+1 \end{cases} k \in \mathbb{Z}$$

$$S = \{(5k+1; 8k+1), k \in \mathbb{Z}\}$$

8
$$p$$
 + 1=5 q + 4

$$8p - 5q = 3$$

Donc le couple (1;1) est une solution de l'équation (E): 8x-5y=3

Donc p=5k+1 et q=8k+1 $k \in \mathbb{Z}$

Par suite.

$$m=8(5k+1)+1=40k+9$$

ou
$$m=5(8k+1)+4=40k+9$$

Or
$$40 k \equiv 0(40)$$

Donc,
$$m \equiv 9(40)$$

c)

 $m = 40 k + 9 \text{ avec } k \in \mathbb{Z}$

On veut qu $m \ge 2000$

donc $40 k + 9 \ge 2000$

$$k \geqslant \frac{2000 - 9}{40} \approx 49, \dots$$

Donc la plus petite valeur de k est donc 50.

On obtient $m_0 = 40 \times 50 + 9 = 2009$

$$p_0 = 5 \times 50 + 1 = 251$$
 $m_0 = 8 \times 251 + 1 = 2009$
 $q_0 = 8 \times 50 + 1 = 401$ $m_0 = 5 \times 401 + 4 = 2009$

$$q_0 = 8 \times 50 + 1 = 401$$
 $m_0 = 5 \times 401 + 4 = 2009$

$$2^{3k} = (2^3)^k$$

Or,
$$2^3 = 8 \equiv 1(7)$$

Donc
$$2^{3k} \equiv {}^{k} 1(7)$$

$$2^{3k} \equiv 1(7)$$

b.

On effectue la division euclidienne de 2009 par 3:

$$2009 = 3 \times 669 + 2$$

$$2^{2009} = 2^{3 \times 669} \times 2^2$$

$$2^{3\times669}\equiv1(7)$$

$$2^2 = 4 \equiv 4(7)$$

Donc
$$2^{2009} \equiv 4(7)$$

4 est le reste de la division euclidienne de 2²⁰⁰⁹ par 7.

```
3.
a)
10 \equiv 3(7)
10^2 \equiv 3^2(7)
10^2 \equiv 9(7)
10^2 \equiv 2(7)
10^3 = 10 \times 10^2 = 6(7)
Or -1 = -1 \times 7 + 6
Le reste de la division euclidienne de -1 par 7 est 6 donc: 10^3 \equiv -1(7)
1≤a≤9
                 a \in \mathbb{N}
0≤b≤9
                 b \in \mathbb{N}
N = \overline{a00b} donc N = a \times 10^3 + b
N est divisible par 7
\Leftrightarrow N \equiv 0 (7)
Or N \equiv -a + b(7)
N est divisible par 7
\Leftrightarrow -a+b\equiv 0(7)
\Leftrightarrow -a+b=7k \quad k \in \mathbb{Z}
-9 \le -a \le -1
0≤b≤9
Donc -9 \le -a + b \le 8
Les multiples de 7 compris entre -9 et 8 sont -7 (obtenu pour k=-1); 0 (obtenu pour k=0) et 7(obtenu pour
k=1)
Pour k = -1
-a + b = -7
a=b+7
b = 0  a = 7
                 N = 7000
        a=8
                 N = 8001
b=1
b=2
                N = 9002
        a=9
Pour k = 0
-a + b = 0
a=b
a \neq 0
                N = 1001
b=1
        a=1
b=2
        a=2
                N = 2002
                N = 3003
b=3
        a=3
b=4
        a=4
                N = 4004
b=5
        a=5
                N = 5005
b=6
                N = 6006
        a=6
b=7
        a=7
                N = 7007
                N = 8008
b=8
        a=8
b=9
                N = 9009
        a=9
Pour k=1
-a + b = 7
a = b - 7
```

Équations du type : ax+by=c

b=9 a=2 N=2009

b=8 a=1 N=1008