

Applications du produit scalaire.

Compléments de trigonométrie.

1. Équations cartésiennes d'une droite	p ₂
2. Équations de cercles	p ²
3. Compléments trigonométrie	p

 $(O; \vec{i}, \vec{j})$ est un repère orthonormal du plan.

1. Équations cartésiennes d'une droite

1.1. Remarque

a)

 $A(x_A; y_A)$ est un point fixé du plan.

$$\vec{n} \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$$
 est un vecteur non nul donné. $(\alpha \neq 0 \text{ ou } \beta \neq 0)$

L'ensemble des points M du plan tels que \overrightarrow{AM} . $\vec{n} = 0$ est une droite.

Démonstration:

$$M(x;y)$$
 $\vec{n} \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$ $\vec{AM} \begin{pmatrix} x - x_A \\ y - y_A \end{pmatrix}$

$$\overrightarrow{AM} \cdot \overrightarrow{n} = 0$$

$$\Leftrightarrow \alpha(x-x_4)+\beta(y-y_4)=0$$

$$\Leftrightarrow \alpha x + \beta y - \alpha x_A - \beta y_A = 0$$

Si on pose : $a=\alpha$ et $b=\beta$ et $c=-\alpha x_A-\beta y_A$, on obtient ax+by+c=0 (avec $a\neq 0$ ou $b\neq 0$) donc une équation cartésienne d'une droite du plan.

b) Réciproquement.

Soit \mathcal{D} la droite : ax + by + c = 0 (avec $a \neq 0$ ou $b \neq 0$).

On détermine les coordonnées (x_A, y_A) d'un point $A de \mathcal{D}$.

Par exemple, si $a \ne 0$, alors on pose $y_A = 0$ et $x_A = \frac{-c}{a}$. Si a = 0 alors $b \ne 0$, on pose $x_A = 0$ et $y_A = \frac{-c}{b}$.

$$M(x;y) \in \mathcal{D}$$

$$\Leftrightarrow$$
 $ax + by + c = 0 = ax_A + by_A + c = 0$

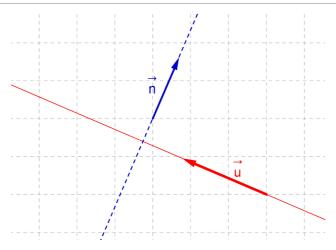
$$\Leftrightarrow a(x-x_A) + b(y-y_A) = 0$$

$$\Leftrightarrow \overrightarrow{AM} \cdot \overrightarrow{n} = 0 \text{ avec } \overrightarrow{n} \begin{pmatrix} a \\ b \end{pmatrix}$$

1.2. Vecteur normal à une droite

 ${\mathscr D}$ est une droite du plan.

Dire que le vecteur \vec{n} est un vecteur normal à \mathcal{D} signifie que $\vec{n} \neq \vec{0}$ et que \vec{n} est orthogonal à un vecteur directeur de \mathcal{D} .



1.3. Propriété

Le plan est muni d'un repère orthonormal.

- 1) Une droite de vecteur normal $\vec{n} \begin{pmatrix} a \\ b \end{pmatrix}$ a une équation de la forme ax + by + c = 0 où $c \in \mathbb{R}$ Une telle équation est appelée **équation cartésienne** de la droite.
- 2) Un ensemble d'équation ax + by + c = 0 (avec a et b non simultanément nuls) est une droite de vecteur normal $\vec{n} \begin{pmatrix} a \\ b \end{pmatrix}$.

1.4. Application

Dans un repère orthonormal, on a les points A(3;-1) et B(2;4). Déterminer une équation de la médiatrice \mathcal{D} du segment [AB].

La droite \mathcal{D} est orthogonale à la droite (AB), donc \overrightarrow{AB} est un vecteur normal à la droite \mathcal{D} .

$$\overrightarrow{AB}\begin{pmatrix} -1\\ 5 \end{pmatrix}$$
 donc \mathscr{D} a pour équation $-x+5$ $y+c=0$.

Soit I le milieu du segment [AB], I a pour coordonnées:

$$x_1 = \frac{3+2}{2} = \frac{5}{2}$$

$$x_2 = \frac{-1+4}{2} = 3$$

$$y_I = \frac{-1+4}{2} = \frac{3}{2}$$
.

I appartient à la droite \mathcal{D} , donc $-x_I + 5y_I + c = 0$.

Donc
$$-\frac{5}{2} + 5 \times \frac{3}{2} + c = 0$$
 d'où $c = \frac{5}{2} - \frac{15}{2} = -\frac{10}{2} = -5$.

Donc \mathcal{D} a pour équation cartésienne -x+5y-5=0.

Applications du produit scalaire. Compléments de trigonométrie.

Remarque:

 $\mathcal D$ admet une infinité d'équations cartésiennes. En effet, il suffit de multiplier par un réel.

On peut donc dire que \mathcal{D} admet pour équation cartésienne -2x+10y-10=0 (multiplier par 2), ou x-5y+5=0 (multiplier par -1)

1.5. Droites perpendiculaires

Dans un repère orthonormal, soient les droites \mathcal{D} et \mathcal{D}' d'équations respectives ax + by + c = 0 et a'x + b'y + c' = 0.

 \mathcal{D} et \mathcal{D}' sont perpendiculaires si et seulement si aa'+bb'=0.

Démonstration:

Soit $\vec{n} \begin{pmatrix} a \\ b \end{pmatrix}$ et $\vec{n'} \begin{pmatrix} a' \\ b' \end{pmatrix}$ les vecteurs normaux de \mathcal{D} et \mathcal{D}' .

 \mathcal{D} et \mathcal{D}' sont perpendiculaires si et seulement si les vecteurs \vec{n} et $\vec{n'}$ sont orthogonaux.

Or \vec{n} et $\vec{n'}$ sont orthogonaux si et seulement si $\vec{n} \cdot \vec{n'} = 0$, c'est à dire si et seulement si aa' + bb' = 0.

Exemple:

Dans un repère orthonormal, soit \mathcal{D} et \mathcal{D}' les droites d'équations respectives: 3x+2y-1=0 et 6x-9y+5=0.

 $3 \times 6 + 2 \times (-9) = 18 - 18 = 0$ donc les droites \mathcal{D} et \mathcal{D}' sont perpendiculaires.

2. Équations de cercles

2.1. Caractérisation du cercle de diamètre [AB]

Soit \mathscr{C} le cercle de diamètre [AB].

Le cercle de diamètre [AB], privé de A et de B, est l'ensemble des points M du plan tels que le triangle MAB est rectangle en M, c'est à dire l'ensemble des points M tels que:

 $\overrightarrow{MA} \cdot \overrightarrow{MB} = 0$, avec $\overrightarrow{MA} \neq \overrightarrow{0}$ et $\overrightarrow{MB} \neq 0$.

De plus, si M=A ou si M=B, on a $\overline{MA} \cdot \overline{MB} = 0$.

Théorème:

Le cercle de diamètre [AB] est l'ensemble des points M tels que $\overrightarrow{MA} \cdot \overrightarrow{MB} = 0$.

Applications du produit scalaire. Compléments de trigonométrie.

2.2. Équation d'un cercle connaissant les coordonnées du centre et le rayon.

Soit \mathscr{C} le cercle de centre A et de rayon R.

Plaçons nous dans un repère orthonormal. Notons $A(x_A; y_A)$.

 \mathscr{C} est l'ensemble des points M tel que AM=R \Leftrightarrow AM²=R².

$$M(x;y) \in \mathcal{C}$$

$$\Leftrightarrow AM^2 = R^2$$

$$\Leftrightarrow (x - x_A)^2 + (y - y_A)^2 = R^2$$

<u>Propriété:</u>

Le cercle $\mathscr C$ de centre $A(x_A; y_A)$ et de rayon R est l'ensemble des points tels que $(x-x_A)^2+(y-y_A)^2=R^2$.

On dit que $(x-x_A)^2+(y-y_A)^2=R^2$ est une équation du cercle \mathscr{C} .

Exemples:

a)Soit & l'ensemble d'équation $(x-3)^2+(y-1)^2=4$.

Cet ensemble est le cercle de centre A(3;1) et de rayon 2.

b)Soit le cercle $\mathscr C$ de centre A(-2;3) et de rayon 5.

 \mathscr{C} a pour équation $(x-(-2))^2+(y-3)^2=5^2$, soit $(x+2)^2+(y-3)^2=25$.

2.3. Équation d'un cercle connaissant les coordonnées de deux points diamétralement opposés.

Soit $A(x_A; y_A)$ et $B(x_B; y_B)$ deux points dans un repère orthonormal. Soit \mathscr{C} le cercle de diamètre [AB].

M(x;y) appartient à \mathscr{C}

$$\Leftrightarrow \overrightarrow{MA} \cdot \overrightarrow{MB} = 0$$

$$\Leftrightarrow (x-x_A)(x-x_B)+(y-y_A)(y-y_B)=0$$

$$\Leftrightarrow x^2 + y^2 - (x_A + x_B)x - (y_A + y_B)y + x_A x_B + y_A y_B = 0$$

Une équation de \mathscr{C} est donc de la forme $x^2 + y^2 + ax + by + c = 0$.

Remarque:

Tout cercle a une équation de la forme $x^2 + y^2 + ax + by + c = 0$, mais toute équation de cette forme n'est pas nécessairement celle d'un cercle.

Exemples:

a) Soit \mathcal{A} l'ensemble d'équation $x^2 + y^2 - 2x + 4y + 12 = 0$

$$x^2 + v^2 - 2x + 4v + 12 = 0$$

$$\Leftrightarrow x^2 - 2x + 1 - 1 + y^2 + 4y + 4 - 4 + 12 = 0$$

$$\Leftrightarrow (x - 1)^2 + (y + 2)^2 + 7 = 0$$

$$\Leftrightarrow (x-1)^2 + (y+2)^2 + 7 = 0$$

$$\Leftrightarrow (x-1)^2 + (y+2)^2 = -7$$

La somme de deux carrés étant toujours positifs, cet ensemble est vide.

b) Soit \mathcal{B} l'ensemble d'équation $x^2 + y^2 - 6x + 10y + 25 = 0$.

$$x^{2}+y^{2}-6x+10y+25=0$$

$$\Leftrightarrow x^{2}-6x+9-9+y^{2}+10y+25-25+25=0$$

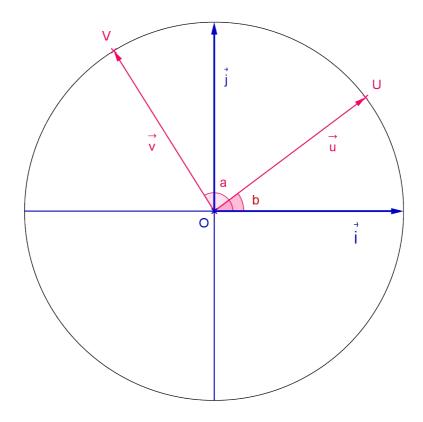
$$\Leftrightarrow (x-3)^{2}+(y+5)^{2}-9=0$$

$$\Leftrightarrow (x-3)^{2}+(y-(-5))^{2}=9$$

D'où \mathcal{B} est le cercle de centre B(3; -5) et de rayon 3.

3. Compléments de trigonométrie

3.1. Cosinus d'une différence



 $(O; \vec{i}, \vec{j})$ est un repère orthonormal direct.

a et b sont deux nombres réels donnés.

$$U(\cos b; \sin b)$$

$$V(\cos a;\sin a)$$

$$\vec{u} = \overrightarrow{OU}$$
 et $\vec{v} = \overrightarrow{OV}$

On a
$$\|\vec{u}\| = OU = 1$$
 et $(\vec{i}; \vec{u}) = b(2\pi)$

$$\|\vec{v}\| = OV = 1$$
 et $(\vec{i}; \vec{v}) = a(2\pi)$

$$(\vec{u}; \vec{v}) = (\vec{u}; \vec{i}) + (\vec{i}; \vec{v})(2\pi)$$

$$(\vec{u}; \vec{v}) = -(\vec{i}; \vec{u}) + (\vec{i}; \vec{v})(2\pi)$$

$$(\vec{u}; \vec{v}) = -b + a(2\pi)$$

$$(\vec{u};\vec{v})=a-b(2\pi)$$

$$\vec{u} \cdot \vec{v} = ||\vec{u}|| \times ||\vec{v}|| \times \cos(\vec{u}; \vec{v})$$

$$\vec{u} \cdot \vec{v} = 1 \times 1 \times \cos(a - b)$$

D'autre part, $\vec{u} \cdot \vec{v} = \cos a \times \cos b + \sin a \times \sin b$

Donc, $\cos(a-b) = \cos a \cos b + \sin a \sin b$

3.2. Remarques

- Si on remplace b par -b, on obtient: $\cos(a-(-b)) = \cos(a+b) = \cos a \cos(-b) + \sin a \sin(-b)$ Or, $\cos(-b) = \cos b$ et $\sin(-b) = -\sin b$
 - On obtient $\cos(a+b) = \cos a \cos b \sin a \sin b$
- $\sin(a+b) = \cos\left(\frac{\pi}{2} (a+b)\right)$

$$\sin(a+b) = \cos\left[\left(\frac{\pi}{2} - a\right) - b\right]$$

$$\sin(a+b) = \cos\left(\frac{\pi}{2} - a\right)\cos b + \sin\left(\frac{\pi}{2} - a\right)\sin b$$

$$\sin(a+b) = \sin a \cos b + \cos a \sin b$$

• Si on remplace b par -b, on obtient:

$$\sin(a-b) = \sin a \cos(-b) + \cos a \sin(-b)$$

$$\sin(a-b) = \sin a \cos b - \cos a \sin b$$

3.3. Formules d'addition

Pour tous nombres réels a et b

$$\cos(a-b) = \cos a \cos b + \sin a \sin b$$

$$\cos(a+b) = \cos a \cos b - \sin a \sin b$$

$$\sin(a+b) = \sin a \cos b + \cos a \sin b$$

$$\sin(a-b) = \sin a \cos b - \cos a \sin b$$

3.4. Exercice

En remarquant que : $\frac{\pi}{3} - \frac{\pi}{4} = \frac{\pi}{12}$ et $\frac{\pi}{3} + \frac{\pi}{4} = \frac{7\pi}{12}$, déterminer les valeurs exactes de $\cos \frac{\pi}{12}$; $\sin \frac{\pi}{12}$; $\cos \frac{7\pi}{12}$; $\sin \frac{7\pi}{12}$.

$$\cos\frac{\pi}{12} = \cos\left(\frac{\pi}{3} - \frac{\pi}{4}\right) = \cos\frac{\pi}{3}\cos\frac{\pi}{4} + \sin\frac{\pi}{3}\sin\frac{\pi}{4}$$

$$\cos \frac{\pi}{12} = \frac{1}{2} \times \frac{\sqrt{2}}{2} + \frac{\sqrt{3}}{2} \times \frac{\sqrt{2}}{2}$$

$$\cos\frac{\pi}{12} = \frac{\sqrt{2} + \sqrt{6}}{4}$$

$$\sin\frac{\pi}{12} = \sin\left(\frac{\pi}{3} - \frac{\pi}{4}\right) = \sin\frac{\pi}{3}\cos\frac{\pi}{4} - \cos\frac{\pi}{3}\sin\frac{\pi}{4}$$

$$\sin \frac{\pi}{12} = \frac{\sqrt{3}}{2} \times \frac{\sqrt{2}}{2} - \frac{1}{2} \times \frac{\sqrt{2}}{2}$$

$$\sin\frac{\pi}{12} = \frac{\sqrt{6} - \sqrt{2}}{4}$$

$$\cos\frac{7\pi}{12} = \cos\left(\frac{\pi}{3} + \frac{\pi}{4}\right) = \cos\frac{\pi}{3}\cos\frac{\pi}{4} - \sin\frac{\pi}{3}\sin\frac{\pi}{4}$$

$$\cos \frac{7\pi}{12} = \frac{1}{2} \times \frac{\sqrt{2}}{2} - \frac{\sqrt{3}}{2} \times \frac{\sqrt{2}}{2}$$

$$\cos\frac{7\pi}{12} = \frac{\sqrt{2} - \sqrt{6}}{4}$$

$$\sin\frac{7\pi}{12} = \sin\left(\frac{\pi}{3} + \frac{\pi}{4}\right) = \sin\frac{\pi}{3}\cos\frac{\pi}{4} + \cos\frac{\pi}{3}\sin\frac{\pi}{4}$$

$$\sin \frac{7\pi}{12} = \frac{\sqrt{3}}{2} \times \frac{\sqrt{2}}{2} + \frac{1}{2} \times \frac{\sqrt{2}}{2}$$

$$\sin\frac{7\pi}{12} = \frac{\sqrt{6} + \sqrt{2}}{4}$$

3.5. Formules de duplication

On pose a=b.

$$\cos(a+b) = \cos(a+a) = \cos 2a = \cos a \times \cos a - \sin a \times \sin a = \cos^2 a - \sin^2 a$$

$$\sin(a+b) = \sin(a+a) = \sin 2a = \sin a \cos a + \cos a \sin a = 2\sin a \cos a$$

Remarque:

$$\cos^2 a + \sin^2 a = 1$$

Donc,
$$\cos^2 a - \sin^2 a = \cos^2 a - (1 - \cos^2 a) = 2\cos^2 a - 1$$

et,
$$\cos^2 a - \sin^2 a = (1 - \sin^2 a) - \sin^2 a = 1 - 2\sin^2 a$$

Pour tout nombre réel a

$$\cos 2a = \cos^2 a - \sin^2 a$$

$$\cos 2a = 2\cos^2 a - 1$$

$$\cos 2a = 1 - 2\sin^2 a$$

$$\sin 2 a = 2 \sin a \cos a$$

3.6. Exercice

Calculer $\cos \frac{\pi}{8}$ et $\sin \frac{\pi}{8}$.

$$\cos\frac{\pi}{4} = \cos\left(2 \times \frac{\pi}{8}\right) = 2\cos^2\frac{\pi}{8} - 1$$

Donc,
$$2\cos^2\frac{\pi}{8} = \frac{\sqrt{2}}{2} + 1$$

$$\cos^2\frac{\pi}{8} = \frac{2+\sqrt{2}}{4}$$

Or,
$$0 < \frac{\pi}{8} < \frac{\pi}{2}$$
, donc $\cos \frac{\pi}{8} > 0$.

Donc,
$$\cos \frac{\pi}{8} = \frac{\sqrt{2+\sqrt{2}}}{2}$$

$$\cos\frac{\pi}{4} = \cos\left(2 \times \frac{\pi}{8}\right) = 1 - 2\sin^2\frac{\pi}{8}$$

Donc,
$$2\sin^2\frac{\pi}{8} = 1 - \frac{\sqrt{2}}{2}$$

$$\sin^2\frac{\pi}{8} = \frac{2 - \sqrt{2}}{4}$$

Or,
$$0 < \frac{\pi}{8} < \frac{\pi}{2}$$
, donc $\sin \frac{\pi}{8} > 0$.

Donc,
$$\sin \frac{\pi}{8} = \frac{\sqrt{2-\sqrt{2}}}{2}$$