

Limites de fonctions et asymptotes

1. Limite en $+\infty$ ou $-\infty$	p1	4. Limites et opérations	p 7
2. Asymptotes	p3		
3. Lilite infinie en un point a	p4		

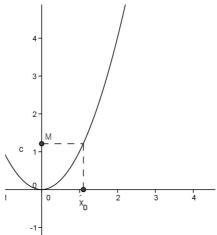
1. Limites en $\pm \infty$

Soit f une fonction définie sur un intervalle] a; $+\infty[$, a appartenant à \mathbb{R} Chercher la limite de f(x) quand x tend vers $+\infty$, c'est étudier le comportement des réels f(x) quand on prend pour x des valeurs aussi grande que l'on veut.

On observe trois types importants de comportement:

1) Si pour x assez grand, les images f(x) sont aussi grandes que l'on veut, on dit que f(x) tend vers $+\infty$ quand x tend vers $+\infty$.

On note alors: $\lim_{x \to +\infty} f(x) = +\infty$



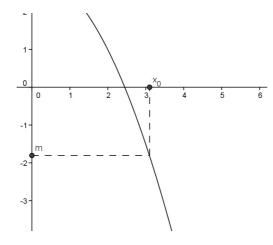
f(x) > M dès que $x > x_0$.

Exemples:

$$\lim_{\substack{x \to +\infty \\ \lim_{x \to +\infty}}} x^2 = +\infty$$

2) Si pour x suffisamment grand, les images de f(x) sont aussi petites que l'on veut, on dit que f(x) tend vers $-\infty$ quand x tend vers $+\infty$.

On note alors: $\lim_{x \to +\infty} f(x) = -\infty$

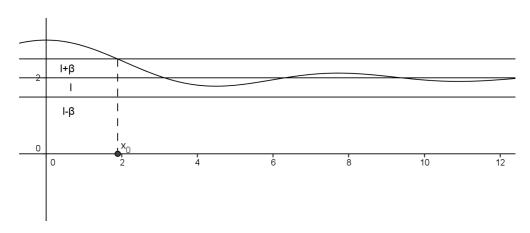


$$f(x) < m \text{ quand } x < x_0.$$
 Exemple:
$$\lim_{x \to +\infty} -x^2 = -\infty$$

3) Si pour x suffisamment grand, les images f(x) sont aussi proches d'un réel l que l'on veut, on dit que f(x) tend vers l quand x tend vers $+\infty$.

On note alors: $\lim_{x \to +\infty} f(x) = l$.

La droite Δ d'équation: y=l est alors appelée asymptote horizontale à la courbe de f en $+\infty$.



$$l-\beta < f(x) < l+\beta$$
 dès que $x > x_0$.

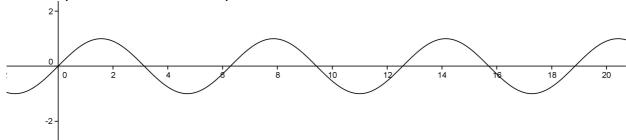
Exemples:
$$\lim_{x \to +\infty} \frac{1}{x} = 0$$

$$\lim_{x \to +\infty} \frac{1}{\sqrt{x}} = 0.$$

Remarques:

Certaines fonctions n'ont aucun de ces comportements en $+\infty$. On dit alors que la fonction n'a pas de

Par exemple: la fonction sinus n'a pas de limite en $+\infty$.



Si f est définie sur]- ∞ ; a [, on définit de même des limites quand x tend vers - ∞ . On notera $\lim_{x \to \infty} f(x)$ une telle limite.

Exemples:
$$\lim_{x \to -\infty} x^2 = +\infty$$

$$\lim_{x\to-\infty}x^3=-\infty$$

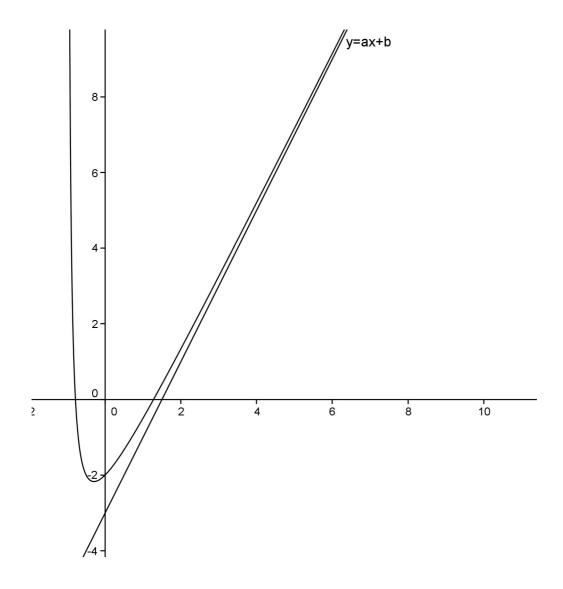
$$\lim_{x \to -\infty} 6 - \frac{1}{x} = 6$$

2. Asymptotes.

<u>Définition</u>: Soit f une fonction définie sur un intervalle de la forme $a : +\infty$

La droite Δ d'équation y=ax+b est <u>asymptote à la courbe</u> représentative de f en $+\infty$ s'il existe une fonction h telle que:

pour tout x appartenant à] $a :+\infty[$, f(x)=ax+b+h(x) et $\lim_{x\to +\infty} h(x)=0$.



<u>Propriété:</u> Soit f une fonction définie sur un intervalle de la forme] a; $+\infty$ [
La droite Δ d'équation y=ax+b est asymptote à la courbe représentative de f en $+\infty$ si et seulement si $\lim_{x\to +\infty} f(x)-(ax+b)=0$.

Preuve:

- Supposons que Δ soit asymptote à $\mathscr C$ en $+\infty$. Il existe dont une fonction h telle que pour tout x appartenant à] a; $+\infty$ [, f(x)=ax+b+h(x) où $\lim_{x\to +\infty} h(x)=0$.

Limites de fonctions et asymptotes

Alors f(x)-(ax+b)=h(x) donc $\lim_{x\to+\infty} f(x)-(ax+b)=0$

- Supposons que $\lim_{x \to +\infty} f(x) - (ax+b) = 0$.

Posons h(x) = f(x) - (ax + b) pour x appartenant à a; $+\infty$

On a donc $\lim_{x\to +\infty} h(x)=0$.

De plus, ax+b+h(x)=ax+b+f(x)-(ax+b)=f(x) pour x appartenant à] a; $+\infty$ [.

Donc f(x)=ax+b+h(x) avec $\lim_{x\to +\infty} h(x)=0$.

Donc Δ est asymptote à $\mathscr C$ en $+\infty$.

Remarques:

- Pour a = 0, on retrouve le cas de l'asymptote horizontale.
- On a, de même, que Δ est asymptote à $\mathscr C$ en - ∞ s'il existe une fonction h telle que f(x)=ax+b+h(x) où $\lim_{x\to -\infty}h(x)=0$.

Exemple: Soit la fonction f définie sur \mathbb{R}^* par $f(x) = \frac{-x^2 + x + 1}{x}$.

- 1. Démontrer que pour tout x appartenant à \mathbb{R}^* , $f(x) = -x + 1 + \frac{1}{x}$.
- 2. Déterminer les asymptotes en $+\infty$ et en $-\infty$ à la courbe \mathcal{C}_f représentative de la fonction f.
- 3. Préciser la position de \mathcal{C}_f par rapport à son asymptote.

Correction.

1. Soit
$$x \in \mathbb{R}^*$$
, $-x+1+\frac{1}{x}=\frac{(-x+1)x+1}{x}=\frac{-x^2+x+1}{x}=f(x)$.

D'où pour tout x appartenant à \mathbb{R}^* , $f(x) = -x + 1 + \frac{1}{x}$.

2. Soit Δ la droite d'équation y=-x+1

$$f(x)-(-x+1)=-x+1+\frac{1}{x}-(-x+1)=\frac{1}{x}$$
.

$$\lim_{x \to +\infty} \frac{1}{x} = 0 \text{ et } \lim_{x \to -\infty} \frac{1}{x} = 0.$$

D'où Δ est asymptote à \mathcal{C}_f en $+\infty$ et en $-\infty$.

3.
$$f(x)-(-x+1)=-x+1+\frac{1}{x}-(-x+1)=\frac{1}{x}$$
.

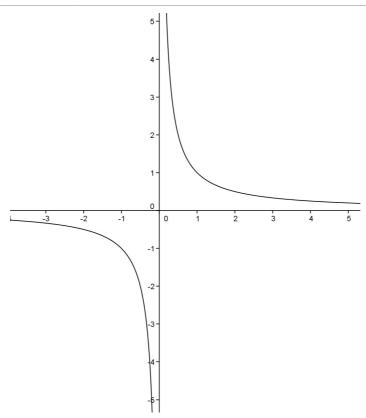
$$\frac{1}{x} > 0$$
 pour $x > 0$ et $\frac{1}{x} < 0$ pour $x < 0$.

Donc Δ est au dessus de \mathcal{C}_f pour x < 0 et Δ est en dessous de \mathcal{C}_f pour x > 0.

3. Limite infinie en un réel a.

3.1. Commençons par un exemple.

Soit f la fonction définie sur \mathbb{R}^k par $f(x) = \frac{1}{x}$.



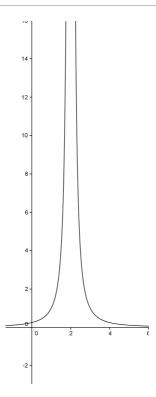
Les réels f(x) dépassent n'importe quel réel A aussi grand que l'on veut pourvu que x soit positif et assez proche de 0.

On dit que f a pour limite $+\infty$ à droite en 0 et on note $\lim_{x\to 0, x>0} \frac{1}{x} = +\infty$.

De même, $\lim_{x\to 0, x<0} \frac{1}{x} = -\infty$.

3.2. Définition.

Si f est définie sur $]a-\alpha;a[$ ou sur $]a;a+\alpha[$, ou sur leur réunion, on dit que f(x) tend vers $+\infty$ quand x tend vers a si f(x) peut-être rendu aussi grand que l'on veut à condition de prendre x suffisamment proche de a.



On définit de façon analogue le fait que f(x) tende vers $-\infty$ quand x tend vers a.

3.3. Propriété.

On admettra la propriété suivante.

Propriété:

- Si
$$\lim_{x \to a} g(x) = 0^+$$
, alors $\lim_{x \to a} \frac{1}{g(x)} = +\infty$.

- Si
$$\lim_{x \to a} g(x) = 0$$
, alors $\lim_{x \to a} \frac{1}{g(x)} = -\infty$.

Exemples:

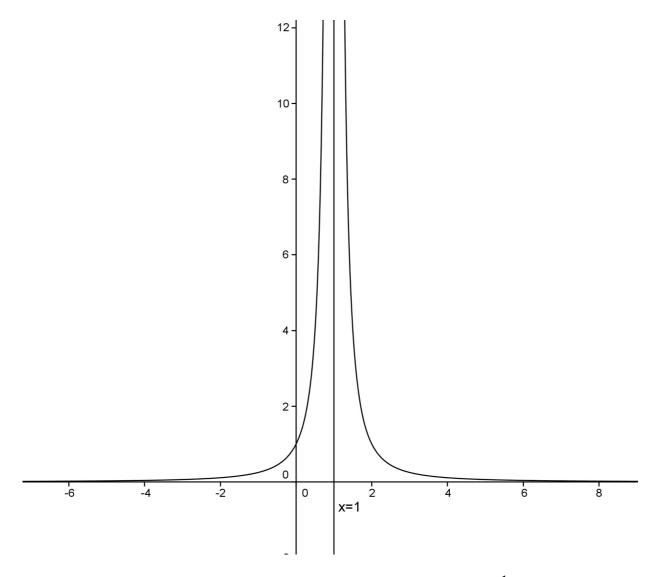
1)
$$\lim_{x\to 2} (x-2)^2 = 0^+ \text{ d'où } \lim_{x\to 2} \frac{1}{(x-2)^2} = +\infty$$
.

2)
$$\lim_{x \to 3, x > 3} x - 3 = 0^+ \text{ d'où } \lim_{x \to 3, x > 3} \frac{1}{x - 3} = +\infty$$
,
 $\lim_{x \to 3, x < 3} x - 3 = 0^- \text{ d'où } \lim_{x \to 3, x < 3} \frac{1}{x - 3} = -\infty$
d'où $\lim_{x \to 3} \frac{1}{x - 3}$ n'existe pas.

3.4. Asymptote verticale.

Définition:

Soit f une fonction, \mathcal{C}_f sa courbe représentative et a un réel. Lorsque la limite (ou la limite à droite, ou à gauche) de f en a est $+\infty$ ou $-\infty$, on dit que la droite d'équation x=a est asymptote verticale à la courbe \mathcal{C}_f .



La courbe représentative de la fonction f définie sur $\mathbb{R}\{1\}$ par $f(x) = \frac{1}{(x-1)^2}$ admet pour asymptote la droite d'équation x=1.

4. Limites et Opérations

Soit f et g deux fonctions, l et l' deux réels, a désigne indifféremment un nombre réel, $+\infty$ ou $-\infty$.

4.1. Somme.

$ \lim_{x \to a} f(x) $	l	l	l	+∞	-∞	+∞
$ \lim_{x\to a}g(x) $	l'	+∞	-∞	+∞	-∞	-∞
$ \lim_{x \to a} (f+g)(x) $	l+l'	+∞	-∞	+∞	-∞	Forme indéterminée

Exemples:

$$\lim_{x \to +\infty} x^2 + 3x = \lim_{x \to +\infty} x^2 + \lim_{x \to +\infty} 3x = +\infty + \infty = +\infty$$

$$\lim_{x \to -\infty} \frac{2}{x} - 5x = \lim_{x \to -\infty} \frac{2}{x} + \lim_{x \to -\infty} -5x = 0 + \infty = +\infty$$

4.2. Produit.

$\lim_{x \to a} f(x)$	l	<i>l</i> ≠0	<i>l</i> ≠0	0	+∞	-∞	+∞
$\lim_{x\to a}g(x)$	l'	+∞	-∞	+∞ ou -∞	+∞	-∞	-∞
$\lim_{x\to a} (fg)(x)$	11'	$+\infty \text{ si } l > 0$ $-\infty \text{ si } l < 0$	$-\infty$ si $l>0$ $+\infty$ si $l<0$	Forme indéterminée	+∞	+∞	-∞

Exemple:
$$\lim_{x \to +\infty} x^2 \left(-3 + \frac{1}{x} \right) = \lim_{x \to +\infty} x^2 \times \lim_{x \to +\infty} -3 + \frac{1}{x} = +\infty \times (-3) = -\infty$$

4.3. Inverse.

$ \lim_{x \to a} f(x) $	$l\neq 0$	+∞	-∞	0^+	0-	0
$ \lim_{x \to a} \frac{1}{f(x)} $	$\frac{1}{l}$	0	0	+∞	-∞	Forme indéterminée

4.4. Quotient.

$ \lim_{x \to a} f(x) $	l	0	$l\neq 0$	+∞ ou - ∞
$ \lim_{x\to a}g(x) $	l'≠0	0	-∞ ou +∞	+∞ ou - ∞
$\lim_{x \to a} \frac{f}{g}(x)$	$\frac{l}{l'}$	Forme indéterminée	0	Forme indéterminée.

Exemple:

$$\lim_{x \to +\infty} 2 + \frac{1}{x} = 2 \text{ et } \lim_{x \to +\infty} x^2 = +\infty \text{ d'où } \lim_{x \to +\infty} \frac{2 + \frac{1}{x}}{x^2} = 0$$

4.5. Quelques règles.

On retiendra les règles suivantes, que l'on peut facilement démontrer grâce aux règles de calculs.

Règle 1:

En $+\infty$ et en $-\infty$, un polynôme a la même limite que son monôme de plus haut degré.

Justification:

Soit f la fonction polynôme définie sur \mathbb{R} par $f(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0$ avec $a_n \neq 0$.

Lorsque
$$x \neq 0$$
, $f(x) = a_n x^n \left(1 + \frac{a_{n-1}}{a_n x} + ... + \frac{a_1}{a_n x^{n-1}} + \frac{a_0}{a_n x^n} \right)$.

Or
$$\lim_{x \to +\infty} \frac{a_{n-1}}{a_n x} = 0$$
, ..., $\lim_{x \to +\infty} \frac{a_1}{a_n x^{n-1}} = 0$, $\lim_{x \to +\infty} \frac{a_0}{a_n x^n} = 0$.

Nous obtenors
$$\lim_{x \to +\infty} \left(1 + \frac{a_{n-1}}{a_n x} + ... + \frac{a_1}{a_n x^{n-1}} + \frac{a_0}{a_n x^n} \right) = 1$$
.

Par suite,
$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} a_n x^n$$
.

Exemples

$$\lim_{x \to +\infty} 5x^2 - 6x + 1 = \lim_{x \to +\infty} 5x^2 = +\infty$$

$$\lim_{x \to -\infty} 4x^3 - 2x^2 + 4 = \lim_{x \to -\infty} 4x^3 = -\infty$$

Nous admettrons la règle suivante:

Règle 2:

En
$$+\infty$$
 et en $-\infty$, la limite de la fonction rationnelle définie par $f(x) = \frac{a_n x^n + ... + a_0}{b_p x^p + ... + b_0}$ $(a_n \neq 0, b_p \neq 0)$ est celle de $x \mapsto \frac{a_n x^n}{b_p x^p}$.

Exemples

$$\lim_{x \to +\infty} \frac{x^2 - 3x + 2}{4x^2 - 5x + 1} = \lim_{x \to +\infty} \frac{x^2}{4x^2} = \frac{1}{4}.$$

$$\lim_{x \to -\infty} \frac{3x^3 + 2x^2 - 7x + 1}{x^2 - 3x + 2} = \lim_{x \to -\infty} \frac{3x^3}{x^2} = \lim_{x \to -\infty} 3x = -\infty$$