

Polynômes-Equation du second degré

1. Fonction polynôme	p1 4. I	Bilan	p5
2. Equation du second degré	p2		
3. Signe d'un trinôme	р3		

1. Fonction polynôme.

1.1. Définition.

Définition: Dire qu'une fonction P, définie sur \mathbb{R} est une fonction polynôme signifie qu'il existe des réels $a_0, a_1, \dots a_n$, $n \in \mathbb{R}$ tels que pour tout réel x, $P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$

Exemples:

- **a.** La fonction P, définie sur \mathbb{R} par $P(x) = -5x^4 + x + 0.7$, est une fonction polynôme, avec $a_4 = -5, a_3 = a_2 = 0, a_1 = 1$ et $a_0 = 0.7$.
- **b.** Si $a_0 = a_1 = ... = a_n = 0$, on obtient la fonction qui vérifie, pour tout $x \in \mathbb{R}$ P(x) = 0: c'est le polynôme nul.
- **c.** Toute fonction constante $x \mapsto k$, k réel, est une fonction polynôme.

1.2. Degré d'un polynôme.

On admettra la propriété suivante:

Propriété-définition:

Toute fonction polynôme, différente du polynôme nul, s'écrit de manière unique sous forme réduite: $a_n x^n + a_{n-1} x^{n-1} + \dots a_1 x + a_0$, avec $a_n \ne 0$ et $n \in \mathbb{N}$

Les réels a_0, a_1, \dots, a_n sont les coefficients du polynôme et l'entier n est le degré.

Exemples:

- **a.** $P(x)=3x^2-5x+1$ est un polynôme de degré 2 ou trinôme du second degré.
- **b.** Q(x)=(x+1)(x+3)(4-2x) est un polynôme du troisième degré. En effet, $Q(x)=(x+1)[4x-2x^2+12-6x]=(x+1)[-2x^2-2x+12]$ $=-2x^3-2x^2+12x-2x^2-2x+12=-2x^3-4x^2-2x+24$
- **c.** Les fonctions affines $x \mapsto ax + b$, avec $a \ne 0$, sont les polynômes du premier degré.

1.3. Racine.

Définition:

On appelle racine d'un polynôme P tout nombre réel α tel que $P(\alpha) = 0$. Autrement dit, une racine de P est une solution de l'équation P(x)=0.

Exemples:

- -1 est racine du polynôme $3x^2-2x-5$.
- Le polynôme (x+1)(3x-10)(4-2x) a pour racines: -1, $\frac{10}{3}$ et 2, et ce sont les seules.
- Le polynôme x^2+3 n'a pas de racine.

1.4. Égalité de deux polynômes.

On admettra la propriété suivante:

Propriété:

Deux polynômes non nuls sont égaux si et seulement si ces polynômes ont le même degré et les coefficients de même degré sont deux à deux égaux.

Exemple:

Pour tout réel x, $ax^4 + bx^3 + cx^2 + dx + e = -5x^4 + 7x^3 - 2x$ si et seulement si a = -5, b = 7, c = 0, d = -2 et e = 0.

2. Équation du second degré.

2.1. Définition.

Une équation du second degré, à une inconnue x, est une équation qui peut s'écrire sous la forme $ax^2 + bx + c = 0$, où a, b et c sont trois réels donnés, $a \ne 0$.

2.2. Forme canonique.

Pour tout réel
$$x$$
, $ax^2 + bx + c = a\left(x^2 + \frac{b}{a}x + \frac{c}{a}\right)$

Or,
$$\left(x + \frac{b}{2a}\right)^2 = x^2 + \frac{b}{a}x + \frac{b^2}{4a^2}$$
,

donc
$$x^2 + \frac{b}{a}x = \left(x + \frac{b}{2a}\right)^2 - \frac{b^2}{4a^2}$$
.

Par suite
$$ax^2 + bx + c = a\left(\left(x + \frac{b}{2a}\right)^2 - \frac{b^2}{4a^2} + \frac{c}{a}\right) = a\left(\left(x + \frac{b}{2a}\right)^2 - \frac{b^2 - 4ac}{4a^2}\right)$$

On pose
$$\Delta = b^2 - 4ac$$
.

Donc
$$ax^2 + bx + c = a\left(\left(x + \frac{b}{2a}\right)^2 - \frac{\Delta}{4a^2}\right)$$
.

Définitions:

- Le réel $b^2 4ac$, noté Δ , est le discriminant du trinôme $ax^2 + bx + c$.
- $a\left(\left(x+\frac{b}{2a}\right)^2-\frac{\Delta}{4a^2}\right)$ est la forme canonique du trinôme ax^2+bx+c .

Exemples: voici les formes canoniques des trinômes suivants.

•
$$-x^2 + 6x + 1 = -(x^2 - 6x - 1) = -(x^2 - 6x + 9 - 9 - 1) = -((x - 3)^2 - 9 - 1) = -((x - 3)^2 - 10)$$

•
$$3x^2 - 2x + 1 = 3\left(x^2 - \frac{2x}{3} + 1\right) = 3\left(\left(x - \frac{1}{3}\right)^2 - \frac{1}{9} + 1\right) = 3\left(\left(x - \frac{1}{3}\right)^2 + \frac{8}{9}\right).$$

2.3. Résolution de l'équation

(E)
$$ax^2 + bx + c = 0$$
, avec $a \neq 0$.

ler cas:
$$\Delta > 0$$
.

$$\frac{\Delta}{4a^2} = \left(\frac{\sqrt{\Delta}}{2a}\right)^2 \text{ donc } ax^2 + bx + c = a \left[\left(x + \frac{b}{2a}\right)^2 - \left(\frac{\sqrt{\Delta}}{2a}\right)^2\right]$$

$$= a \left(x + \frac{b}{2a} + \frac{\sqrt{\Delta}}{2a}\right) \left(x + \frac{b}{2a} - \frac{\sqrt{\Delta}}{2a}\right).$$
Donc, $ax^2 + bx + c = 0 \Leftrightarrow a \left(x + \frac{b}{2a} + \frac{\sqrt{\Delta}}{2a}\right) \left(x + \frac{b}{2a} - \frac{\sqrt{\Delta}}{2a}\right) = 0$

L'équation (E) admet alors deux solutions distinctes:
$$x_1 = \frac{-b - \sqrt{\Delta}}{2a}$$
 et $x_2 = \frac{-b + \sqrt{\Delta}}{2a}$.

– 2ième cas: $\Delta = 0$.

On a alors
$$ax^2 + bx + c = a\left(x + \frac{b}{2a}\right)^2$$

Donc $ax^2 + bx + c = 0 \Leftrightarrow a\left(x + \frac{b}{2a}\right)^2 = 0$

L'équation (E) admet une unique solution: $x_0 = -\frac{b}{2a}$.

- 3ième cas: $\Delta < 0$.

$$\frac{\Delta}{4a^2} < 0 \text{ donc } -\frac{\Delta}{4a^2} > 0.$$

Par suite,
$$\left(x + \frac{b}{2a}\right)^2 - \frac{\Delta}{4a^2} \ge -\frac{\Delta}{4a^2} > 0$$

L'équation (E) n'a pas de solution réelle.

Bilan:

On considère l'équation $ax^2 + bx + c = 0$, $a \neq 0$ et $\Delta = b^2 - 4ac$.

- Si $\Delta < 0$, l'équation n'a pas de solution réelle.

- Si $\Delta = 0$, l'équation a une unique solution: $x_0 = -\frac{b}{2a}$.

- Si $\Delta > 0$, l'équation a deux solutions: $x_1 = \frac{-b - \sqrt{\Delta}}{2a}$ et $x_2 = \frac{-b + \sqrt{\Delta}}{2a}$.

Exemples:

Résoudre les équations suivantes:

a)
$$-x^2+2x-10=0$$

$$\Delta = 2^2 - 4 \times (-1) \times (-10) = -36.$$

L'équation n'a pas de solution.

b)
$$2x^2 - 3x - 5 = 0$$

$$\Delta = (-3)^2 - 4 \times 2 \times (-5) = 49.$$

D'où l'équation admet deux solutions:

$$x_1 = \frac{3 + \sqrt{49}}{2 \times 2} = \frac{3 + 7}{4} = \frac{10}{4} = 2,5$$

$$x_2 = \frac{3 - \sqrt{49}}{2 \times 2} = \frac{3 - 7}{4} = \frac{-4}{4} = -1$$

c)
$$9x^2 + 6x + 1 = 0$$

$$\Delta = 6^2 - 4 \times 9 \times 1 = 0.$$

D'où l'équation admet une unique solution:

$$x_0 = -\frac{6}{2 \times 9} = -\frac{1}{3}$$
.

3. Signe du trinôme

3.1. Factorisation.

On a vu lors de la démonstration faite au II.3 que le trinôme ax^2+bx+c pouvait se factoriser si Δ était supérieur ou égal à 0. Nous admettrons qu'il est impossible de trouver une factorisation si Δ est négatif.

Propriété:

Soit $ax^2 + bx + c$ avec $a \ne 0$ et Δ son discriminant.

- Si $\Delta > 0$, $ax^2 + bx + c = a(x x_1)(x x_2)$ où x_1 et x_2 sont les racines du trinôme.
- Si $\Delta=0$, $ax^2+bx+c=a(x-x_0)^2$ où x_0 est l'unique racine du trinôme.
- Si Δ <0, il n'existe pas de factorisation de ax^2+bx+c par un polynôme de degré 1.

Exemples:

Reprenons les trois trinômes étudiés au II. 3. et factorisons les.

- a) $-x^2+2x-10$ ne peut pas être factorisé par un polynôme de degré 1 car son discriminant est négatif.
- **b)** $2x^2-3x-5=2(x-2,5)(x-(-1))=2(x-2,5)(x+1)$ car son discriminant est strictement positif et que les racines de l'équation $2x^2-3x-5=0$ sont $x_1=2,5$ et $x_2=-1$.
- c) $9x^2 + 6x + 1 = 9\left(x \frac{1}{3}\right)^2$ car son discriminant est nul et l'unique racine de l'équation $9x^2 + 6x + 1 = 0$ est $x_0 = \frac{1}{3}$.

3.2. Signe du trinôme.

Étudions le signe du trinôme $ax^2 + bx + c$, $a \ne 0$.

Pour cela, distinguons les trois cas vus précédemment.

• Si $\Delta > 0$, $ax^2 + bx + c$ peut se factoriser sous la forme suivante: $a(x - x_1)(x - x_2)$, où x_1 et x_2 sont les racines du trinôme.

Afin d'étudier le signe du trinôme, nous allons faire un tableau de signe.

Supposons que $x_1 < x_2$.

x	-∞	x_1	х	+∞
а	Signe de <i>a</i>		Signe de a	Signe de a
$x-x_1$	-	0	+	+
$x-x_2$	-		- (+
ax^2+bx+c	Signe de <i>a</i>	Sign	e opposé à celui de a (Signe de <i>a</i>

• Si Δ =0, ax^2+bx+c peut se factoriser sous la forme suivante: $a(x-x_0)^2$ où x_0 est l'unique racine du trinôme

On sait que pour toute valeur de x, $(x-x_0)^2$ est positif et s'annule en x_0 .

Donc ax^2+bx+c est du signe de a et s'annule en x_0 pour tout réel x.

• Si $\triangle < 0$, $ax^2 + bx + c$ ne peut pas se factoriser, on utilise donc la forme canonique:

$$a\left(\left(x+\frac{b}{2a}\right)^2-\frac{\Delta}{4a^2}\right).$$

Comme Δ est négatif, on en déduit que $-\frac{\Delta}{4a^2}$ est positif, d'où $\left(x + \frac{b}{2a}\right)^2 - \frac{\Delta}{4a^2}$ est la somme de deux nombres positifs donc est positif d'où $ax^2 + bx + c$ est du signe de a pour tout réel x.

Rilan

Soit le trinôme $ax^2 + bx + c$ avec $a \ne 0$.

• Si $\Delta > 0$, le trinôme s'annule en deux réels distincts x_1 et x_2 . Si $x_1 < x_2$, son tableau de signe est le suivant:

- Si $\Delta = 0$, le trinôme a le même signe que a pour tout x, mais s'annule en $-\frac{b}{2a}$.
- Si $\Delta < 0$, le trinôme a le même signe que *a* pour tout réel *x*.

On dit encore que: le trinôme $ax^2 + bx + c$ ($a \ne 0$) est du signe de a sauf entre ses racines s'il en a.

Exemples:

Résoudre les inéquations suivantes:

a)
$$-x^2+6x-5 > 0$$

 $\Delta = 6^2-4 \times (-1) \times (-5)=16$
d'où $x_1 = \frac{-6-4}{-2} = 5$ et $x_2 = \frac{-6+4}{-2} = 1$.

Nous obtenons donc le tableau de signe suivant:

x	$-\infty$	1	5		$+\infty$
$-x^2+6x-5$		- 0	+ 0	_	

D'où les solutions de cette inéquation est l'intervalle]1; 5[. S=]1; 5[

b)
$$x^2 - 2x + 10 \le 0$$
.
 $\Delta = (-2)^2 - 4 \times 1 \times 10 = 4 - 40 = -36$.

D'où pour tout réel x, $x^2 - 2x + 10$ est strictement positif d'où cette inéquation n'admet pas de solution. $S = \emptyset$.

c)
$$\frac{1}{4}x^2 - x + 1 \le 0$$

 $\Delta = (-1)^2 - 4 \times \frac{1}{4} \times 1 = 0$.

D'où pour tout réel x, $\frac{1}{4}x^2 - x + 1$ est positif et s'annule en $-\frac{b}{2a} = -\frac{-1}{\frac{2}{4}} = 2$ donc $S = \{2\}$.

4. Bilan.

Souvenons nous d'une propriété vue en seconde:

Propriété:

Dans un repère, la courbe représentative de la fonction $x \mapsto ax^2 + bx + c$ (avec $a \ne 0$) est une parabole dont le sommet S a pour abscisse $-\frac{b}{2a}$.

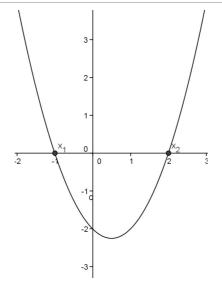
Distinguons les trois cas.

•
$$\Delta > 0$$

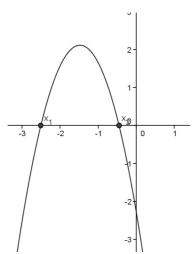
L'équation $ax^2 + bx + c = 0$ a deux solutions: $x_1 = \frac{-b - \sqrt{\Delta}}{2a}$ et $x_2 = \frac{-b + \sqrt{\Delta}}{2a}$

La fonction $x \mapsto ax^2 + bx + c$ a pour représentation graphique:

$$\circ$$
 $a > 0$

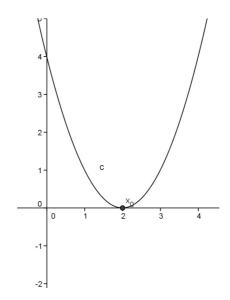


 \circ a < 0

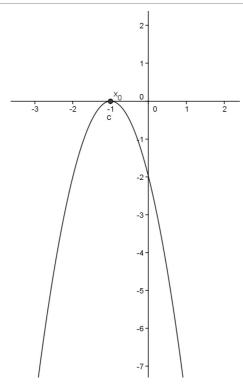


• Si $\Delta = 0$, l'équation $ax^2 + bx + c = 0$ a une unique solution: $x_0 = -\frac{b}{2a}$. La fonction $x \mapsto ax^2 + bx + c$ a pour représentation graphique:

o a >0

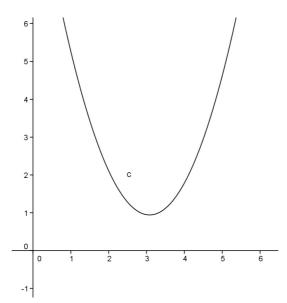


 \circ a < 0



• Si $\Delta < 0$, l'équation $ax^2 + bx + c = 0$ n'a pas de solution réelle. La fonction $x \mapsto ax^2 + bx + c$ a pour représentation graphique:

 \circ a > 0



 \circ a < 0

Polynômes Equation du second degré

