

Exercices Fiche 1

Exercice 1:

Résoudre les équations suivantes:

a.
$$\sqrt{x} > 2$$

a.
$$\sqrt{x} > 2$$
 b. $\sqrt{x} < 4$

c.
$$\sqrt{x-5} < 2$$
 d. $\sqrt{3-x} > 1$

$$d. \quad \sqrt{3-x} > 1$$

e 3 \sqrt{x} + 1 > 2

Exercice 2:

Exprimer sans racine carrée au dénominateur.

a.
$$\frac{1}{\sqrt{2}-3}$$

b.
$$\frac{1-\sqrt{3}}{1+\sqrt{3}}$$

c.
$$\frac{2-\sqrt{x}}{\sqrt{x+3}}$$

b.
$$\frac{1-\sqrt{3}}{1+\sqrt{3}}$$
 c. $\frac{2-\sqrt{x}}{\sqrt{x}+3}$ d. $\frac{2}{\sqrt{x+1}-1}$

Exercice 3:

Soit f la fonction définie sur \mathbb{R} par $f(x) = \sqrt{x^2 + 2x + 5}$.

- 1. Démontrer que, pour tout réel x, $f(x)-2=\frac{(x+1)^2}{\sqrt{x^2+2x+5}+2}$.
- 2. En déduire que $f(x) \ge 2$ pour tout réel x.

En déduire le minimum de f sur \mathbb{R}

Exercice 4:

On considère la fonction f définie sur $\mathbb{R}\{0\}$ par $f(x) = \frac{1}{x}$, de courbe représentative \mathcal{C} , et d la droite

d'équation y=4x.

Étudier le signe de f(x)-4x.

En déduire les positions relatives de la courbe $\mathscr C$ et de la droite d.

Exercice 5:

Étudier la position relative de la parabole \mathcal{P} d'équation $y=2x^2-6x+1$ et de la droite d'équation y=-x+4.

CORRECTION

Exercice 1:

Résoudre les équations suivantes:

a.
$$\sqrt{x} > 2$$

L'ensemble de validité de cette inéquation est $[0;+\infty[$

$$\sqrt{x} > 2$$

$$(\sqrt{x})^2 > 2^2$$

$$S=]4;+\infty[$$

b.
$$\sqrt{x} < 4$$

L'ensemble de validité de cette inéquation est $[0;+\infty[$

$$\sqrt{x}$$
 < 4

$$(\sqrt{x})^2 < 4^2$$

$$S = [0; 16]$$

c.
$$\sqrt{x-5} < 2$$

L'ensemble de validité de cette inéquation est $[5;+\infty[$

$$\sqrt{x-5} < 2$$

$$(\sqrt{x-5})^2 < 2^2$$

 $x-5 < 4$

$$S = [5;9]$$

d.
$$\sqrt{3-x} > 1$$

L'ensemble de validité de cette inéquation est $]-\infty;3]$

$$\sqrt{3-x} > 1$$

$$(\sqrt{3-x})^2 > 1^2$$

$$3 - x > 1$$

$$S=]-\infty;2]$$

e.
$$3\sqrt{x} + 1 \ge 2$$
.

L'ensemble de validité de cette inéquation est $[0; +\infty[$

$$3\sqrt{x}+1\geq 2$$

$$3\sqrt{x} \ge 1$$

$$(3\sqrt{x})^2 \geqslant 1^2$$

$$9x \ge 1$$

$$x \ge \frac{1}{0}$$

$$S = \left[\frac{1}{9} ; + \infty \right]$$

Exercice 2:

Exprimer sans racine carrée au dénominateur.

a.
$$\frac{1}{\sqrt{2}-3} = \frac{\sqrt{2}+3}{(\sqrt{2}-3)(\sqrt{2}+3)} = \frac{\sqrt{2}+3}{2-9} = -\frac{\sqrt{2}+3}{7}$$
b.
$$\frac{1-\sqrt{3}}{1+\sqrt{3}} = \frac{(1-\sqrt{3})(1-\sqrt{3})}{(1+\sqrt{3})(1-\sqrt{3})} = \frac{1-2\sqrt{3}+3}{1-3} = -\frac{4-2\sqrt{3}}{2}$$
c.
$$\frac{2-\sqrt{x}}{\sqrt{x}+3} = \frac{(2-\sqrt{x})(\sqrt{x}-3)}{(\sqrt{x}+3)(\sqrt{x}-3)} = \frac{2\sqrt{x}-6-x+3\sqrt{x}}{x-9} = \frac{5\sqrt{x}-x-6}{x-9}$$
d.
$$\frac{2}{\sqrt{x+1}-1} = \frac{2(\sqrt{x}+1+1)}{(\sqrt{x}+1-1)(\sqrt{x}+1+1)} = \frac{2(\sqrt{x}+1+1)}{x+1-1} = \frac{2(\sqrt{x}+1+1)}{x}$$

Soit f la fonction définie sur Repar $f(x) = \sqrt{x^2 + 2x + 5}$.

- 1. Démontrer que, pour tout réel x, $f(x)-2=\frac{(x+1)^2}{\sqrt{x^2+2x+5}+2}$.
- 2. En déduire que $f(x) \ge 2$ pour tout réel x.

En déduire le minimum de f sur \mathbb{R}

$$\frac{(x+1)^2}{\sqrt{x^2+2x+5+2}} = \frac{(x+1)^2(\sqrt{x^2+2x+5}-2)}{(\sqrt{x^2+2x+5}+2)(\sqrt{x^2+2x+5}-2)} = \frac{(x+1)^2(\sqrt{x^2+2x+5}-2)}{x^2+2x+5-4} = \frac{(x+1)^2(\sqrt{x^2+2x+5}-2)}{(x^2+2x+1)^2} = \frac{(x+1)^2(\sqrt{x^2+2x+5}-2)}{(x+1)^2} = \sqrt{x^2+2x+5}-2 = f(x)-2$$

Donc,

$$f(x)-2=\frac{(x+1)^2}{\sqrt{x^2+2x+5}+2}$$

2. Pour tout réel x :

$$\frac{(x+1)^2}{\sqrt{x^2+2x+5}+2} \ge 0$$

Donc:

$$f(x)-2 \ge 2$$

Par suite, pour tout réel
$$x$$
, $f(x) \ge 2$
De plus, $f(-1) = \sqrt{(-1)^2 + 2 \times (-1) + 5} = \sqrt{1 - 2 + 5} = \sqrt{4} = 2$

Donc, 2 est le minimum de f sur \mathbb{R} il est atteint pour x=-1

Exercice 4:

On considère la fonction f définie sur $\mathbb{R}\{0\}$ par $f(x) = \frac{1}{x}$, de courbe représentative \mathscr{C} , et d la droite

d'équation y=4x.

Étudier le signe de f(x)-4x.

En déduire les positions relatives de la courbe \mathscr{C} et de la droite d.

$$f(x)-4x$$

$$=\frac{1}{x}-4x$$

$$= \frac{1-4x^{2}}{x}$$

$$= \frac{(1-2x)(1+2x)}{x}$$

$$1-2x=0$$

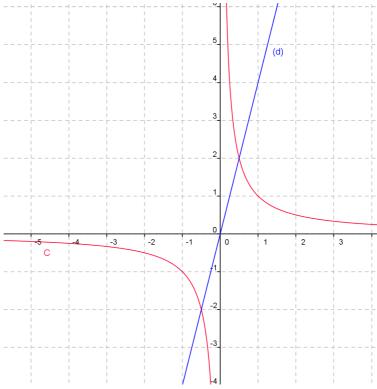
$$x = \frac{1}{2}$$

$$1+2x=0$$

$$x = -\frac{1}{2}$$

x	$-\infty$		$-\frac{1}{2}$		0		$\frac{1}{2}$		$+\infty$
1-2x		+		+		+	0	_	
1+2x		-	0	+		+		+	
X		-		_	0	+		+	
f(x)-4 x		+		_		+		_	

Sur
$$\left] -\infty; -\frac{1}{2} \right[$$
, \mathscr{C} est au-dessus de d .
Sur $\left] -\frac{1}{2}; 0 \right[$, \mathscr{C} est en-dessous de d .
Sur $\left] 0; \frac{1}{2} \right[$, \mathscr{C} est au-dessus de d .
Sur $\left] \frac{1}{2}; +\infty \right[$, \mathscr{C} est en-dessous de d .



Exercice 5:

Étudier la position relative de la parabole \mathscr{P} d'équation $y=2x^2-6x+1$ et de la droite d'équation y=-x+4.

$$(2x^2-6x+1)-(-x+4)$$

= 2x^2-5x-3

$$\Delta = (-5)^2 - 4 \times 2 \times (-3) = 25 + 24 = 49$$

 $\Delta = (-5)^2 - 4 \times 2 \times (-3) = 25 + 24 = 49$ L'équation $2x^2 - 5x - 3 = 0$ admet deux solutions:

$$x_1 = \frac{5-7}{4} = -\frac{1}{2}$$

$$x_2 = \frac{5+7}{4} = 3$$

x	$-\infty$		$-\frac{1}{2}$		3		+ ∞
$2x^2-5x-3$		+	0	_	0	+	

Sur $\left| -\infty; -\frac{1}{2} \right|$, la parabole est au-dessus de la droite.

Sur $\left| -\frac{1}{2}; 3 \right|$, la parabole est en-dessous de la droite.

Sur $[3;+\infty[$, la parabole est au-dessus de la droite.

