

Exercices Fiche 3

Exercice 1:

Soit u la suite définie sur \mathbb{N} par $u_n = n^2 - 6n + 1$.

- 1. Calculer les cinq premiers termes de la suite u.
- **2.** Quel est le sens de variation de la suite (u_n) ? A partir de quel rang?

Exercice 2:

Soit u la suite définie sur \mathbb{N} par $u_n = n(n-1)$.

- 1. Exprimer u_{n-1} , u_{n+1} et u_{2n} en fonction de n.
- **2.** Démontrer que, pour tout entier naturel n, $u_{n+1} = u_n + 2n$.

Exercice 3:

On considère la suite (u_n) telle que: $u_0 = \frac{1}{2}$ et, pour tout entier naturel n, $u_{n+1} = u_n(1-u_n)$.

- 1. Calculer u_1 , u_2 et u_3 .
- 2. Déterminer le sens de variation de la suite (u_n).

Exercice 4:

La directrice d'une entreprise décide d'allouer à ses employés une prime de Noël d'un montant de 400 €, cette prime étant revalorisée chaque année de 6 €.

On note p_0 la prime initiale, et p_n la prime au bout de n années $(n \ge 1)$.

- 1. Calculer p_1 et p_2 . Exprimer p_{n+1} en fonction de p_n .
- **2.** Quelle est la nature de la suite (p_n) ?
- 3. En déduire l'expression de p_n en fonction de n.
- 4. Quel est le montant de la prime au bout de 10 ans.
- 5. Quel est le montant total de toutes les primes versées à une personne jusqu'à cette 10^e année incluse?

Exercice 5:

Guillaume décide d'emprunter 8 000 euros afin de s'acheter une voiture. Il décide de faire un prêt sur 24 mois. On note $u_0 = 300 \in I$ le premier versement effectué par Guillaume, puis u_n le versement effectué au $n^{i \text{ème}}$ mois. Les versements augmentent de 5% chaque mois.

- 1. Calculer u_1 , u_2 et u_3 .
- **2.** Quelle est la nature de la suite (u_n) ?
- 3. Exprimer u_n en fonction de n.
- 4. Calculer le montant de son dernier versement.
- 5. Combien aura-t-il rembourser au total?

CORRECTION

Exercice 1:

Soit u la suite définie sur Npar $u_n = n^2-6n+1$.

1. Calculer les cinq premiers termes de la suite u.

$$u_0 = 1$$
 $u_1 = -4$ $u_2 = 4 - 12 + 1 = -7$ $u_3 = 9 - 18 + 1 = 10 - 18 = -8$ $u_4 = 16 - 24 + 1 = 17 - 24 = -7$

2. Quel est le sens de variation de la suite (u_n) ? A partir de quel rang?

$$u_{n+1} - u_n = (n+1)^2 - 6(n+1) + 1 - n^2 + 6n - 1$$

$$u_{n+1} - u_n = n^2 + 2n + 1 - 6n - 6 + 1 - n^2 + 6n - 1$$

$$u_{n+1} - u_n = 2n - 5$$

$$2n - 5 > 0 \iff n > \frac{5}{2}$$

Donc, (u_n) est croissante à partir du rang 3.

Exercice 2:

Soit u la suite définie sur \mathbb{N} par $u_n = n(n-1)$.

1. Exprimer u_{n-1} , u_{n+1} et u_{2n} en fonction de n.

$$u_{n-1} = (n-1)(n-1-1)$$

$$u_{n-1} = (n-1)(n-2)$$

$$u_{n+1} = (n+1)n$$

$$u_{2n} = 2n(2n-1)$$

2. Démontrer que, pour tout entier naturel n, $u_{n+1} = u_n + 2n$.

$$u_n + 2n = n(n-1) + 2n = n^2 + n$$

$$u_{n+1} = (n+1)n = n^2 + n$$
Dong pour tout entier naturel $u_{n+1} = u_{n+1} + n$

Donc, pour tout entier naturel, $u_{n+1} = u_n + 2n$

Exercice 3:

On considère la suite (u_n) telle que: $u_0 = \frac{1}{2}$ et, pour tout entier naturel n, $u_{n+1} = u_n(1-u_n)$.

1. Calculer u_1 , u_2 et u_3

$$u_1 = u_0 (1 - u_0) = \frac{1}{2} \left(1 - \frac{1}{2} \right) = \frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$$

$$u_2 = u_1 (1 - u_1) = \frac{1}{4} \left(1 - \frac{1}{4} \right) = \frac{1}{4} \times \frac{3}{4} = \frac{3}{16}$$

$$u_3 = u_2 (1 - u_2) = \frac{3}{16} \left(1 - \frac{3}{16} \right) = \frac{3}{16} \times \frac{13}{16} = \frac{39}{256}$$

2. Déterminer le sens de variation de la suite (u_n).

$$u_{n+1} - u_n$$

$$= u_n - u_n^2 - u_n$$

$$= -u_n^2$$

Or, pour tout entier naturel, $-u_n^2 < 0$, donc la suite (u_n) est décroissante.

Exercice 4:

La directrice d'une entreprise décide d'allouer à ses employés une prime de Noël d'un montant de 400 €, cette prime étant revalorisée chaque année de 6 €.

On note p_0 la prime initiale, et p_n la prime au bout de n années ($n \ge 1$).

1. Calculer p_1 et p_2 . Exprimer p_{n+1} en fonction de p_n .

$$p_1 = 400 + 6 = 406$$

 $p_2 = 406 + 6 = 412$
 $p_{n+1} = p_n + 6$

2. Quelle est la nature de la suite (p_n) ?

La suite (p_n) est la suite arithmétique de premier terme $p_0 = 400$ et de raison 6.

3. En déduire l'expression de p_n en fonction de n.

Pour tout entier naturel n,

$$p_n = p_0 + nr$$

 $p_n = 400 + 6n$

4. Quel est le montant de la prime au bout de 10 ans.

$$p_{10} = 400 + 6 \times 10 = 460 \, \epsilon$$

5. Quel est le montant total de toutes les primes versées à une personne jusqu'à cette 10^e année incluse?

$$S = 11 \times \frac{u_0 + u_{10}}{2} = 11 \times \frac{400 + 460}{2} = 11 \times 430 = 4730 \,\epsilon$$

Exercice 5:

Guillaume décide d'emprunter 8 000 euros afin de s'acheter une voiture. Il décide de faire un prêt sur 24 mois. On note $u_0 = 300 \in$ le premier versement effectué par Guillaume, puis u_n le versement effectué au $n^{ième}$ mois. Les versements augmentent de 5% chaque mois.

1. Calculer u_1 , u_2 et u_3 .

Coefficient multiplicateur associée à une augmentation de 5% est: $1 + \frac{5}{100} = 1,05$

$$u_1 = 300 \times 1,05 = 315$$

 $u_2 = 315 \times 1,05 = 330,75$
 $u_3 = 330,75 \times 1,05 \approx 347,29$

2. Quelle est la nature de la suite (u_n) ?

La suite (u_n) est la suite géométrique de premier terme $u_0=300$ et de raison 1,05.

3. Exprimer u_n en fonction de n.

Pour tout entier naturel
$$n$$
,
 $u_n = u_0 \times q^n$
 $u_n = 300 \times 1,05^n$

4. Calculer le montant de son dernier versement.

$$u_{23} = 300 \times 1,05^{23} \approx 921,46$$

5. Combien aura-t-il rembourser au total?

$$S = 300 \times \frac{1 - 1,05^{24}}{1 - 1,05} \approx 13350,60$$