

TP4

1. Préambule

Le logiciel Python utilise une instruction simple qui permet de calculer le reste de la division euclidienne de deux entiers positifs.

Exemples:

Dans cet exercice on choisit 8 pour diviseur.

 $45=8\times5+5$ le quotient est 5 et le reste est 5.

 $72=8\times9+0$ le quotient est 9 et le reste est 0.

 $4=8\times0+4$ le quotient est 0 est le reste est 4.

Si a est un entier naturel alors $a=b\times q+r$ q est un entier naturel et r est un entier naturel compris entre 0 et 7. r=0 ou 1 ou 2 ou 3 ou 4 ou 5 ou 6 ou 7.

Si a est un entier naturel, a %8 représente le reste de la division euclidienne de a par 8. Attention, a %8 n'est pas une variable pour le logiciel Python mais un entier naturel compris entre 0 et 7.

Un entier naturel a est divisible par 8 si et seulement si a %8 est nul.

2. Énoncé

```
n est un entier naturel.

a=3^n+5^n

On rappelle que 3^0=5^0=1
```

- **2.1.** Pour $n \le 20$, on veut déterminer les valeurs de n pour lesquelles a est divisible par 8.
 - . En donnant un programme Python et en l'exécutant, répondre à la question.
 - . Quelle conjecture peut-on faire?
- **2.2.** Pour $n \le 20$, on se propose de déterminer les valeurs pour lesquelles a est divisible par 4.
- **2.2.a.** Démontrer que pour tout entier naturel n, a est un nombre pair. En déduire les valeurs possibles du reste de la division euclidienne de a par 8.
- **2.2.b.** Déterminer un algorithme puis donner un programme en Python permettant de répondre à la question et exécuter ce programme.
 - . Quelle conjecture peut-on faire.

3. Correction

3.1.

```
print('Début de programme')
for n in range(21):
    a=3**n+5**n
    r=a%8  # r prend la valeur du reste de la division euclidienne de a par 8
    if r==0: # si la valeur affectée à r est égale à 0
        print(« n= »+str(n),« a est divisible par 8 »)
print('Fin de programme')
```

. On obtient


```
File Edit Format Run Options Window Help

print('Début de programme')

for n in range(21):
    a=3**n+5**n
    r=a%8  # r prend la valeur du restede la division euclidienne de a par8
    if r==0: # Si la valeur affectée à r est égale à 0
        print("n="+str(n),"a est divisible par 8")

print('Fin de programme')
```

. Remarques

On utilise range(21) car on veut les résultats pour les 21 valeurs de n comprise entre 0 et 20.

À la quatrième ligne, on affecte à la variable r la valeur a%8.

À la cinquième ligne on ne peut pas écrire r=0 sinon on affecte à r la valeur 0.

On veut connaître si la valeur affectée à la variable r est <u>égale</u> à 0.

Pour cela cette instruction le logiciel Python utilise un double symbole égal.

. On exécute le programme et on obtient

```
Début de programme
n=1
      a est divisible par 8
      a est divisible par 8
n=3
      a est divisible par 8
n=5
n=7
      a est divisible par 8
      a est divisible par 8
n=9
n=11 a est divisible par 8
n=13 a est divisible par 8
n=15 a est divisible par 8
n=17 a est divisible par 8
n=19 a est divisible par 8
Fin de programme
```

```
Python 3.6.4 Shell
                                                                           X
File Edit Shell Debug Options Window Help
Python 3.6.4 (v3.6.4:d48eceb, Dec 19 2017, 06:54:40) [MSC v.1900 64 bit (AMD64)]
on win32
Type "copyright", "credits" or "license()" for more information.
====== RESTART: C:\Users\Serge\Documents\Programmes-Python\tp4-1.py =======
Début de programme
n=1 a est divisible par 8
n=3 a est divisible par 8
n=5 a est divisible par 8
n=7 a est divisible par 8
n=9 a est divisible par 8
n=11 a est divisible par 8
n=13 a est divisible par 8
n=15 a est divisible par 8
n=17 a est divisible par 8
n=19 a est divisible par 8
Fin de programme
>>>
```

. On remarque que pour toute valeur impaire de n, a est divisible par 8 et que pour toute valeur paire de n, a n'est pas divisible par 8.

Conjecture

n est un entier naturel, $a=3^n+5^n$ est divisible par 8 si et seulement si n est impair. Ce résultat sera démontrer en première.

3.2.a. Le produit de deux nombres impairs est un nombre impair donc toute puissance d'un nombre impair est un nombre impair.

Pour tout entier naturel n, 3ⁿ et 5ⁿ sont des nombres impairs et leur somme est a un nombre pair. Conséquence

r est un nombre pair et r est compris entre 0 et 7.

Les valeurs possibles de r sont : 0 ; 2 ; 4 et 6.

3.2.b. a est divisible par 4 si et seulement si r=0 ou r=4.

(car a est divisible par 4 si et seulement si a-8q est divisible par 4).

Pour avoir un reste égal à 0 ou 4 il suffit de ne pas avoir un reste égal à 2 ou 6.

On propose l'algorithme suivant.

Variables: a, n et r sont des entiers naturels

Traitement

```
Tant que 0 \le n \le 20

a = 3^n + 5^n

r est le reste de la division euclidienne de a par 8

Si r = 2

Afficher: a n'est pas divisible par 4

Sinon Si r = 6

Afficher: a n'est pas divisible par 4

Sinon

Afficher: a est divisible par 4
```

. Programme en Python

```
print('début de programme')
for n in range(21):
    a=3**n+5**n
    r=a%8
    if r==2:
        print(« n= »+str(n),« a n'est pas divisible par 4 »)
    elif r==6:
        print(« n= »+str(a),« a n'est pas divisible par 4 »)
    else:
        print(« n= »+str(n),« a est divisiblepar4 »)
print('Fin de programme')
. On obtient
```

```
File Edit Format Run Options Window Help
```

```
print('Début de programme')

for n in range(21):
    a=3**n+5**n
    B=a%8
    if B==2:
        print("n="+str(n), "a n'est pas divisible par 4")
    elif B==6:
        print("n="+str(n), "a n'est pas divisible par 4")
    else:
        print("n="+str(n), "a n'est pas divisible par 4")
    else:
        print("n="+str(n), "a est divisible par 4")
print('Fin de programme')
```


- Remarque elif est l'instruction Sinon Si
- . On exécute le programme et on obtient

Début de programme

a n'est pas divisible par 4 n=0a est divisible par 4 n=1a n'est pas divisible par 4 n=2n=3a est divisible par 4 a n'est pas divisible par 4 n=4a est divisible par 4 n=5a n'est pas divisible par 4 n=6a est divisible par 4 n=7a n'est pas divisible par 4 n=8a est divisible par 4 n=9a n'est pas divisible par 4 n=10a est divisible par 4 n=11n=12a n'est pas divisible par 4 a est divisible par 4 n=13n=14a n'est pas divisible par 4 n=15a est divisible par 4 a n'est pas divisible par 4 n=16a est divisible par 4 n=17a n'est pas divisible par 4 n = 18a est divisible par 4 n = 19a n'est pas divisible par 4 n=20Fin de programme


```
Python 3.6.4 Shell
                                                                           \Box
File Edit Shell Debug Options Window Help
Python 3.6.4 (v3.6.4:d48eceb, Dec 19 2017, 06:54:40) [MSC v.1900 64 bit (AMD64)]
 on win32
Type "copyright", "credits" or "license()" for more information.
>>>
====== RESTART: C:\Users\Serge\Documents\Programmes-Python\tp4-2.py =======
Début de programme
n=0 a n'est pas divisible par 4
n=1 a est divisible par 4
n=2 a n'est pas divisible par 4
n=3 a est divisible par 4
n=4 a n'est pas divisible par 4
n=5 a est divisible par 4
n=6 a n'est pas divisible par 4
n=7 a est divisible par 4
n=8 a n'est pas divisible par 4
n=9 a est divisible par 4
n=10 a n'est pas divisible par 4
n=11 a est divisible par 4
n=12 a n'est pas divisible par 4
n=13 a est divisible par 4
n=14 a n'est pas divisible par 4
n=15 a est divisible par 4
n=16 a n'est pas divisible par 4
n=17 a est divisible par 4
n=18 a n'est pas divisible par 4
n=19 a est divisible par 4
n=20 a n'est pas divisible par 4
Fin de programme
>>>
```

. Conjecture

a est divisible par 4 si et seulement si n est nombre impair (si et seulement si n est divisible par 8). On peut vérifier que pour tout entier n pair (inférieur ou égal à 20) r=2.