

Fonctions de référence

1. Fonction carré

p2 2. Fonction inverse

p4

1. Fonction carré

1.1. Introduction

f est définie sur IR

1.2. Sens de variation de la fonction carré

Etude de variations de f

 $a \in \mathbb{R}$, $b \in \mathbb{R}$. On suppose a < b et pour comparer f(a) et f(b), on détermine le signe de f(b) - f(a).

$$f(b) - f(a)$$
 = $b^2 - a^2 = (b - a)(b + a)$

b - a > 0 mais (b + a) n'a pas le même signe pour toutes les valeurs de a et de b (telles que a < b).

Par exemple:

$$a = -3$$
 et $b = 2$

$$a + b = -1$$
 < 0

$$f(2) - f(-3) < 0$$

$$a = -2$$
 et $b = 3$

$$a + b = 1 > 0$$

$$f(3) - f(-2) > 0$$

f n'est pas croissante sur $\mathbb R$ et f n'est pas décroissante sur $\mathbb R$. On dit que f n' est pas m n on m sur $\mathbb R$

On veut partager \mathbb{R} en réunion d'intervalles sur lesquels la fonction est soit croissante soit décroissante

RAPPEL:

On rappelle que la somme de

- ✓ deux nombres positifs est un nombre positif
- ✓ deux nombres négatifs est un nombre négatif

Donc

 \checkmark Si $a \in [0; +\infty[; b \in [0; +\infty[\text{ et } a < b \ (0 \le a < b)] \text{ alors}$

$$f(b) - f(a) = (b - a) (b + a) > 0$$
 soit $f(a) < f(b)$

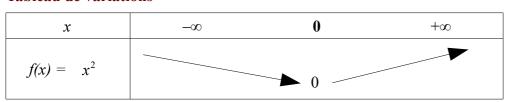
f est donc strictement croissante sur $[0; +\infty[$

 \checkmark Si $a \in]-\infty; 0]; b \in]-\infty; 0]$ et $a < b (a < b \le 0)$ alors

$$f(b) - f(a) = (b - a) (b + a) < 0 \text{ soit } f(a) > f(b)$$

f est donc strictement décroissante sur $]-\infty;0]$

Tableau de variations



f(0) = 0, pour tout x réel, $x^2 \ge 0$, donc f(0) = 0 est le minimum de f sur \mathbb{R}

A RETENIR:

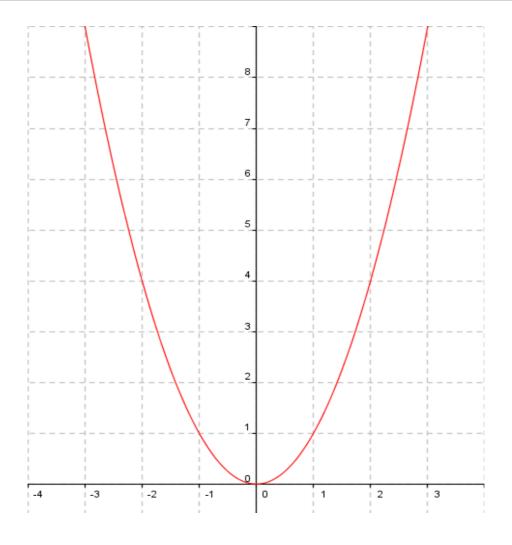
 $a \in \mathbb{R}$, $b \in \mathbb{R}$.

- \checkmark Si $(0 \le a < b)$ alors $a^2 < b^2$
- \checkmark Si $(a < b \le 0)$ alors $a^2 > b^2$

1.3. Courbe représentative de la fonction carré

On choisit un repère orthogonal.

X	-3	-2	-1	-0,5	0	0,5	1	2	3
f(x)	9	4	1	0,25	0	0,25	1	4	9



1.4. Remarques

- ✓ La courbe représentative de f se nomme parabole.
- \checkmark Le point O(0;0) est le sommet de la parabole.
- ✓ On a pour tout nombre réel x $(-x)^2 = x^2$ soit f(-x) = f(x): on dit que f est paire

- ✓ Les points M(x;f(x)) et M'(-x;f(-x)) sont symétriques par rapport à l'axe (yy'). L'axe (yy') est un axe de symétrie de la courbe représentative de f
- ✓ En général $f(a+b) \neq f(a) + f(b)$ soit $(a+b)^2 \neq a^2 + b^2$. f n'est pas une fonction linéaire. On notera que le tableau de valeurs donné n'est pas un tableau de proportionalité.

2. Fonction inverse

2.1. Introduction

$$f:]-\infty; 0[\cup]0; +\infty[\longrightarrow \mathbb{R}$$

$$X \longrightarrow f(x) = \frac{1}{x}$$

0 est une valeur interdite pour la fonction f

2.2. Sens de variation de la fonction inverse

Pour la fonction inverse on doit étudier les variations sur $]0;+\infty[$ et sur $]-\infty;0[$

✓ Si
$$a \in]0; +\infty[$$
 et $b \in]0; +\infty[$ et $a < b$ $(0 < a < b)$ alors $f(b) - f(a) = \frac{1}{b} - \frac{1}{a} = \frac{a - b}{ab} = \frac{-(b - a)}{ab}$

* Le produit de deux nombres strictement positifs est un nombre strictement positif

$$* - (b - a) < 0$$

Donc f(b) - f(a) < 0 soit f(a) > f(b)

f est donc strictement décroissante sur $]0;+\infty[$

✓ Si
$$a \in]-\infty; 0[$$
 et $b \in]-\infty; 0[$ et $a < b$ $(a < b < 0)$ alors $f(b) - f(a) = \frac{1}{b} - \frac{1}{a} = \frac{a - b}{ab} = \frac{-(b - a)}{ab}$

* Le produit de deux nombres strictement négatifs est un nombre strictement positif

$$* - (b - a) < 0$$

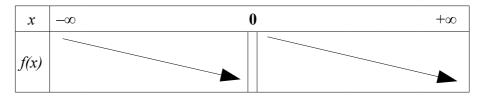
Donc $f(b) - f(a) \le 0$ soit $f(a) \ge f(b)$

f est donc strictement décroissante sur $]-\infty;0[$

ATTENTION:

Il ne faut pas dire que f est strictement décroissante sur $]-\infty$; $0[\cup]0$; $+\infty[$ car a = -1 et b = 1 f(a) = -1 et f(b) = 1 donc f(a) < f(b)

Tableau de variations



A RETENIR:

 $a \in \mathbb{R}$, $b \in \mathbb{R}$.

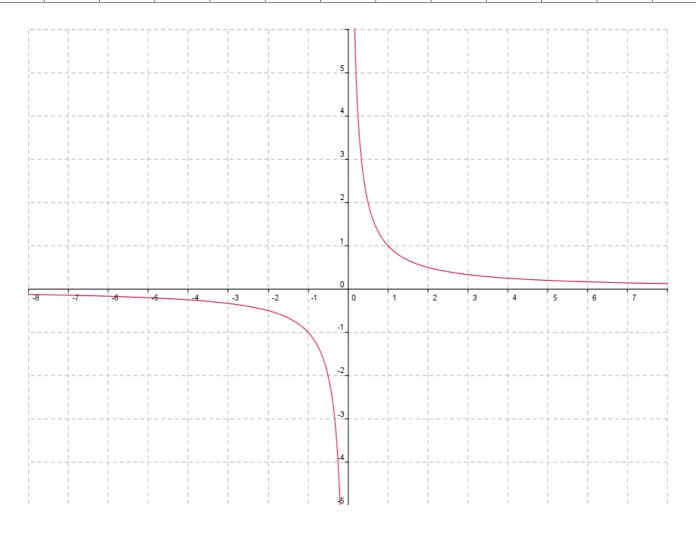
$$\checkmark$$
 Si $(0 < a < b)$ alors $\frac{1}{a} > \frac{1}{b}$

$$\checkmark$$
 Si $(a < b < 0)$ alors $\frac{1}{a} > \frac{1}{b}$

2.3. Courbe représentative de la fonction inverse

On choisit un repère orthogonal.

X	-8	-4	-2	-1	-0,5	-0,25	0,25	0,5	1	2	4	8
f(x)	-0,125	-0,25	-0,5	-1	-2	-4	4	2	1	0,5	0,25	0,125



2.4. Remarques

- ✓ La courbe représentative de f se nomme hyperbole.
- ✓ On a pour tout nombre réel x $\frac{1}{-x} = -\frac{1}{x}$ soit f(-x) = -f(x): on dit que f est impaire

- ✓ Les points M(x;f(x)) et M'(-x;f(-x)) sont symétriques par rapport à l'origine. L'origine est le centre de symétrie de la courbe représentative de f
- ✓ En général $f(a+b) \neq f(a) + f(b)$ soit $\frac{1}{a+b} \neq \frac{1}{a} + \frac{1}{b}$. f n'est pas une fonction linéaire.