Solides de l'espace Perspective cavalière

Fiche exercices

EXERCICE 1

- 1. Construire en perspective un cube ABCDEFGH dont les côtés ont pour longueur 3cm (on prendra les notations de la fiche de cours)
- 2. Déterminer la nature du triangle ACH (on calculera la valeur exacte de la longueur AC)
- 3. Quelle est la nature du triangle AGE?

Calculer la valeur de la longueur de la diagonale [AG] du cube.

4. K∈[AD] et AK=2cm.

 $L \in [BF]$ et BL=1cm.

 $M \in [AB]$ et AM = xcm.

Déterminer la valeur de x pour laquelle la somme KM+LM soit minimale

EXERCICE 2

On considère un tétraèdre régulier ABCD. Toutes ses arêtes ont pour longueur 3cm. I est le milieu de [AB]. G est le centre de gravité du triangle ABC. On admet que [DG] est la hauteur du tétraèdre issue de D. En particulier, le triangle DGC est rectangle en G.

- 1. Représenter le tétraèdre en perspective cavalière.
- 2. Calculer CI.
- 3. Calculer l'aire en cm² du triangle ABC.
- 4. Calculer DG.
- 5. Calculer le volume en cm³ du tétraèdre.

(On donnera les valeurs exactes)

EXERCICE 3

On considère un cône de révolution de sommet S et de base le disque de centre O et de rayon r=2cm. OS=6cm.

- 1. Représenter le cône en perspective cavalière.
- 2. Soit M un point du cercle de centre O et de rayon r=2cm. Donner une valeur approchée de l'angle \widehat{MSO} au degré près.
- 3. Calculer le volume du cône en cm³.
- 4. Calculer l'aire latérale en cm² du cône.

EXERCICE 4

On considère un cylindre de révolution de hauteur 5cm et de rayon de base 1,5cm.

- 1. Représenter le cylindre en perspective cavalière.
- 2. Construire le patron de sa surface latérale.
- 3. Calculer le volume en cm³ du cylindre. (On donnera une valeur approchée à 10⁻² près)
- 4. Calculer l'aire totale du cylindre en cm². (On donnera une valeur approchée à 10⁻² près)

EXERCICE 5

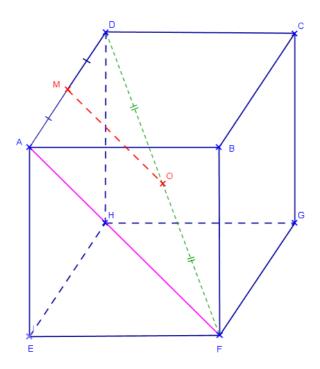
On considère une sphère de centre O et de rayon R=4cm. Soit A un point de la sphère et I le point de [OA] tel que OI=2cm.

Le plan perpendiculaire à (OA) passant par I coupe la sphère selon un cercle de centre I.

- 1. Représenter la sphère en perspective cavalière.
- 2. Calculer le volume de cm³ de la sphère. (On donnera une valeur approchée à 10⁻² près)

- 3. Calculer l'aire de la sphère en cm². (On donnera une valeur approchée à 10^{-2} près)
- 4. Calculer le rayon r en cm du cercle de centre I.

EXERCICE 6

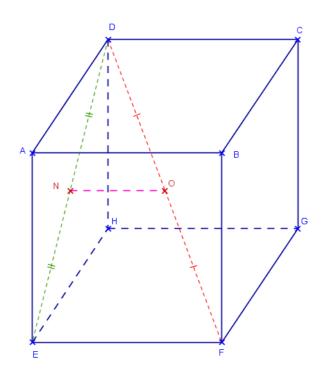


ABCDEFGH est un cube. AB=5cm.

- 1. Calculer les longueurs AF et DF en cm.
- 2. O est le milieu de [DF] et M milieu de [AD].

Calculer la longueur OM en cm.

EXERCICE 7



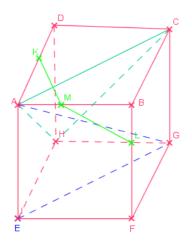
Solides de l'espace Perspective cavalière

ABCDEFH est un cube. AB=5cm. O est le milieu de [DF] et N est le milieu de [DE]. Calculer la longueur ON en cm.

CORRECTION

EXERCICE 1

1. Construire en perspective cavalière un cube ABCDEFGH dont les côtés ont pour longueur 3cm



2. Déterminer la nature du triangle ACH

[AC], [AH] et [CH] sont trois diagonales de carrés de 3cm de côté donc AC=AH=CH. Par suite, le triangle ACH est équilatéral.

Dans le plan (ABC), le triangle ABC est rectangle en B. J'utilise le théorème de Pythagore:

 $AC^2=BA^2+BC^2$

 $AC^2=3^2+3^2$

 $AC^2=9+9$

 $AC^2=18$

 $AC = \sqrt{18}$

AC= $3\sqrt{2}$ cm

3. Quelle est la nature du triangle AGE ?

Calculer la valeur de la longueur de la diagonale [AG] du cube

Le triangle AGE est rectangle en E.

J'utilise le théorème de Pythagore:

 $AG^2=EA^2+EG^2$

 $AG^2=3^2+18$

(EG=AC)

AG²=9+18

 $AG^2=27$

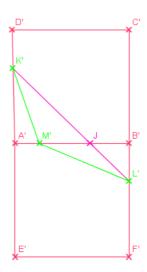
AG= $\sqrt{27}$

AG= $3\sqrt{3}$ cm

4. Déterminer la valeur de x pour laquelle la somme KM+LM soit minimale

Attention, le segment [KL] est intérieur au cube donc ne coupe pas [AB].

On construit partiellement le patron du cube c'est à dire on construit le patron correspondant aux faces (ABCD) et (ABFE).



KM+ML=K'M'+M'L' longueur d'une ligne brisée.

Cette somme est minimale lorsque les 3 points K'; M' et L' sont alignés, c'est à dire lorsque M' est en J point d'intersection de [K'L'] et [A'B'].

On travaille dans le plan du patron.

Les droites (A'K') et (B'L') sont parallèles donc les triangles A'JK' et B'JL' constituent une configuration de Thalès, par conséquent:

$$\frac{JB'}{JA'} = \frac{B'L'}{A'K'} = \frac{JL'}{JK'}$$

$$\frac{JB'}{JA'} = \frac{B'L'}{A'K'}$$

$$\frac{\text{JB'}}{\text{IA'}} = \frac{1}{2}$$

Donc, JA'=2JB'

Par suite:

JA'=2JB'

JA'=2(3-JA')

JA'=6-2JA'

JA'+2JA'=6

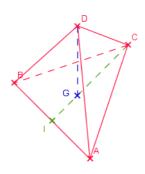
3JA'=6

$$JA' = \frac{6}{3} = 2$$

et x=JA=2cm.

EXERCICE 2

1. Représenter le tétraèdre en perspective cavalière



2. Calculer CI

Le triangle ABC est équilatéral donc la médiane (AI) est aussi le hauteur issue de A et donc le triangle ACI est rectangle en I.

J'utilise le théorème de Pythagore:

$$CA^2=IC^2+IA^2$$

$$3^2 = IC^2 + \left(\frac{3}{2}\right)^2$$

$$9=IC^2+\frac{9}{4}$$

$$9 = IC^{2} + \frac{9}{4}$$

$$IC^{2} = 9 - \frac{9}{4}$$

$$IC^2 = \frac{27}{4}$$

IC=
$$\sqrt{\frac{27}{4}}$$

IC=
$$\frac{3\sqrt{3}}{2}$$
 cm

3. Calculer l'aire en cm² du triangle ABC

Aire_{ABC=}
$$\frac{AB \times CI}{2}$$

Aire_{ABC=}
$$\frac{3 \times \frac{3\sqrt{3}}{2}}{2}$$

Aire_{ABC=}
$$\frac{9\sqrt{3}}{4}$$
 cm²

4. Calculer DG

G est le centre de gravité du triangle ABC donc:

$$CG = \frac{2}{3}CI = \frac{2}{3} \times \frac{3\sqrt{3}}{2} = \sqrt{3} cm$$

J'utilise le théorème de Pythagore dans le triangle rectangle DGC:

$$3^2 = GD^2 + (\sqrt{3})^2$$

$$9 = GD^2 + 3$$

$$GD^2=9-3$$

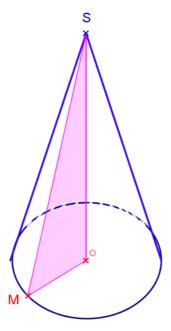
GD²=6
GD=
$$\sqrt{6}$$
 cm

5. Calculer le volume en cm³ du tétraèdre

Volume_{tétraèdre=}
$$\frac{\text{Aire de ABC} \times \text{DG}}{3} = \frac{\frac{9\sqrt{3}}{4} \times \sqrt{6}}{3} = \frac{9\sqrt{18}}{12} = \frac{3\sqrt{18}}{4} = \frac{9\sqrt{2}}{4} \text{cm}^3$$

EXERCICE 3

1. Représenter le cône en perspective cavalière



2. Donner une valeur approchée de l'angle $\widehat{\text{MSO}}$ au degré près

Dans le triangle rectangle MSO:

$$\tan \widehat{MSO} = \frac{\widehat{OM}}{\widehat{OS}}$$
$$\tan \widehat{MSO} = \frac{2}{6}$$
$$\widehat{MSO} \approx 18^{\circ}$$

3. Calculer le volume du cône en cm³

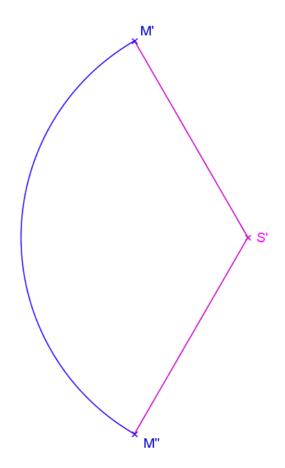
Volume_{cône}=
$$\frac{\pi \times r^2 \times SO}{3}$$

Volume_{cône}= $\frac{\pi \times 2^2 \times 6}{3}$
Volume_{cône}= 8π
Volume_{cône} $\approx 25,13$ cm³

4. Calculer l'aire latérale en cm² du cône

Le périmètre de la base est: $2\pi r = 4\pi$

Le patron de la surface latérale st un secteur angulaire.



Dans le triangle rectangle SOM, j'utilise le théorème de Pythagore:

 $SM^2=OS^2+OM^2$

 $SM^2=6^2+2^2$

 $SM^2=36+4$

 $SM^2 = 40$

SM= $\sqrt{40}$

SM= $2\sqrt{10}$ cm

L'arc de cercle M'M" est un arc de cercle de centre S' et de rayon $2\sqrt{10}$

 $Aire_{\text{lat\'erale du c\^one}} = \ \pi \times r \times SM$

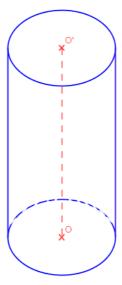
Aire_{latérale du cône} = $\pi \times 2 \times 2\sqrt{10}$

Aire_{latérale du cône} = $4\sqrt{10}\pi$

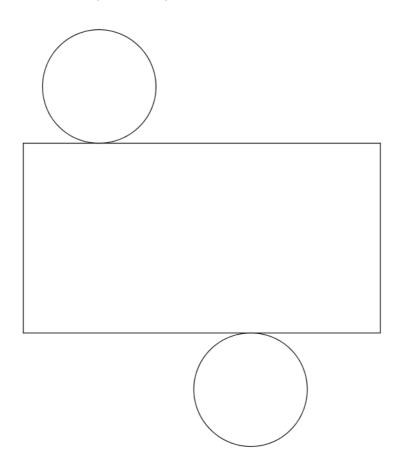
Aire_{latérale du cône}≈39,74cm²

EXERCICE 4

1. Représenter le cylindre en perspective cavalière



2. Construire le patron Le périmètre de la base= $2 \pi r = 2 \pi \times 1,5 = 3 \pi \approx 9,42 \text{ cm}$



3. Calculer le volume en cm³ du cylindre Volume du cylindre= $\pi \times r^2 \times h = \pi \times (1,5)^2 \times 5 = 11,25 \pi \approx 35,34 \text{ cm}^3$

4. Calculer l'aire totale du cylindre en cm³

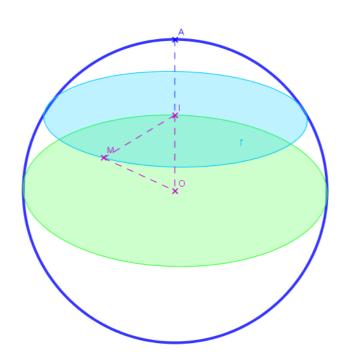
Aire latérale $3 \pi \times 5 = 15 \pi \text{ cm}^2$

Aire des 2 disques= $2 \times \pi r^2 = 2 \times \pi \times (1,5)^2 = 4,5 \pi \text{ cm}^2$

Aire totale= $15\pi + 4.5\pi = 19.5\pi \approx 61.26 \text{ cm}^2$

EXERCICE 5

1. Représenter la sphère en perspective cavalière



2. Calculer le volume en cm³ de la sphère

Volume_{sphère} =
$$\frac{4 \times \pi \times 4^3}{3} = \frac{256 \pi}{3} \approx 268,08 \text{ cm}^3$$

3. Calculer l'aire de la sphère

Aire_{sphère}=
$$4 \times \pi \times 4^2 = 64 \pi \approx 201,06 \text{ cm}^2$$

3. Calculer le rayon r en cm du cercle de centre I

Dans le triangle rectangle moi, j'utilise le théorème de Pythagore:

 $OM^2=MI^2+OI^2$

 $4^2 = MI^2 + 2^2$

MI²=16-4

 $MI^2=12$

 $MI = \sqrt{12}$

 $MI \approx 2\sqrt{3} \text{ cm}$

MI≈3,46cm

EXERCICE 6

1. Calculer les longueurs AF et DF

. [AF] est une diagonale du carré ABFE de côté 5cm.

En utilisant le théorème de Pythagore dans le triangle ABF rectangle en B on obtient :

$$AF^2 = AB^2 + BF^2 = 5^2 + 5^2 = 50$$

$$AF = \sqrt{50} = 5\sqrt{2} \text{ cm}$$

. Le triangle ADF est rectangle en A (la droite (AD) est orthogonale à toute droite contenue dans le plan (ABF)).

En utilisant le théorème de Pythagore :

$$DF^2 = AD^2 + AF^2 = 5^2 + 50 = 75$$

$$DF = \sqrt{75} = 5\sqrt{3} \text{ cm}$$

2. Calculer la longueur OM en cm

Dans le triangle ADF, O est le milieu de [DF] et M est le milieu de [AD], donc la droite (OM) est parallèle à la droite (AF) et $OM = \frac{1}{2}AF$.

$$OM = \frac{5\sqrt{2}}{2} cm.$$

EXERCICE 7

Calculer la longueur ON

Dans le triangle (DEF), O est le milieu de [DF] et N est le milieu de [DE], donc la droite (ON) est parallèle à la droite (EF) et $ON = \frac{1}{2}EF$.

[EF] est l'un des côtés du cube donc EF=5 cm

$$ON = \frac{5}{2}$$
 cm.