

Exercice 3

Un enfant joue aux fléchettes. Un adulte observe son jeu et remarque que si l'enfant atteint la cible lors d'un lancer, alors il atteint encore la cible au lancer suivant avec une probabilité égale à $\frac{3}{4}$.

Si l'enfant n'atteint pas la cible lors d'un lancer, alors il atteint la cible au lancer suivant avec une probabilité égale à $\frac{1}{8}$.

Lors du premier lancer l'enfant atteint la cible avec une probabilité égale à $\frac{1}{10}$.

- 1. On note C l'état : « l'enfant atteint la cible » et on note R l'état : « l'enfant n'atteint pas la cible ».
- **1.a.** Représenter la situation par un graphe probabiliste.
- 1.b. Eccrire la matrice de transition M de ce graphe en considérant les états dans l'ordre alphabétique.
- 2. On désigne par n un nombre entier naturel non nul. Soient C_n l'événement : « l'enfant atteint la cible au $n^{\text{ème}}$ lancer et R_n l'événement « l'enfant n'atteint pas la cible au $n^{\text{ème}}$ lancer ». L'état probabiliste lors du $n^{\text{ème}}$ lancer est donné par la matrice ligne $E_n = \begin{pmatrix} c_n & r_n \end{pmatrix}$ où c_n est la probabilité de l'événement C_n et r_n la probabilité de l'événement R_n .
- **2.a.** Ecrire la matrice E_1 de l'état probabiliste initial.
- **2.b.** Déterminer la matrice ligne E₃ et donner une interprétation du résultat obtenu.
- 3. Soit E = (c r) la matrice ligne de l'état probabiliste stable.
- 3.a. Déterminer c et r.
- **3.b.** L'adulte affirme qu'après un très grand nombre de lancers, l'enfant a deux fois plus de chance de manquer la cible que de l'atteindre. Cette affirmation est-elle justifiée ?

CORRECTION

- **1.a.** Il y a deux états C et R donc le graphe admet deux sommets.
 - . « Si l'enfant atteint la cible lors d'un lancer alors il atteint la cible au lancer suivant avec une probabilité » donc n'atteint pas la cible avec une probabilité égale à $1 - \frac{3}{4} = \frac{1}{4}$.

Conséquences

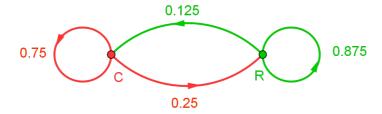
Le poids de l'arête CC est égal $\frac{3}{4}$ =0,75 et le poids de l'arête CR est égal à $\frac{1}{4}$ =0,25

. « Si l'enfant n'atteint pas la cible lors d'un lancer alors il atteint la cible au lancer suivant avec une probabilité égale à $\frac{1}{8}$ » donc n'atteint pas la cible avec une probabilité égale à $1 - \frac{1}{8} = \frac{7}{8}$.

Conséquences

Le poids de l'arête RC est égal $\frac{1}{8}$ =0,125 et le poids de l'arête RR est égal à $\frac{7}{8}$ =0,875

. Arbre probabiliste



1.b. Ordre des sommets : C et R

$$\mathbf{M} = \begin{pmatrix} \mathbf{m}_{11} & \mathbf{m}_{12} \\ \mathbf{m}_{21} & \mathbf{m}_{22} \end{pmatrix}$$

m₁₁ est le poids de l'arête CC donc 0,75

m₁₂ est le poids de l'arête CR donc 0,25

m₂₁ est le poids de l'arête RC donc 0,125

m₂₂ est le poids de l'arête RR donc 0,875

On obtient pour matrice de transition :
$$M = \begin{pmatrix} 0.75 & 0.25 \\ 0.125 & 0.875 \end{pmatrix}$$

2.a. « Lors du premier lancer l'enfant atteint la cible avec une probabilité égale à $\frac{1}{10}$ ».

conséquence

$$c_1 = \frac{1}{10} = 0.10$$
 donc $r_1 = 1 - 0.10 = 0.9$
 $E_1 = (0.1 \quad 0.9)$

2.b. On a $E_3 = E_1 \times M^2$

On obtient M^2 en utilisant la calculatrice (on arrondit au millième).

$$M^{2} = \begin{pmatrix} 0.594 & 0.406 \\ 0.203 & 0.797 \end{pmatrix}$$

$$E_{3} = \begin{pmatrix} c_{3} & r_{3} \end{pmatrix} = E_{1} \times M^{2}$$

$$c_{3} = 0.594 \times 0.1 + 0.203 \times 0.9 = 0.242 \text{ à } 10^{-3} \text{ près}$$

$$r_{3} = 0.406 \times 0.1 + 0.797 + 0.9 = 0.758 \text{ à } 10^{-3} \text{ près}$$

$$E_{2} = \begin{pmatrix} 0.242 & 0.758 \end{pmatrix}$$

- 3. E = (c r)
- **3.a.** Si E est la matrice ligne de l'état probaliste stable alors $E=E\times M$ et c+r=1.

Si E est la matrice ligne de l'état probables stable alors
$$E = E \times M$$
 et $C + I = I$.

$$(c 1-c) = (c 1-c) \begin{pmatrix} 0.75 & 0.25 \\ 0.125 & 0.875 \end{pmatrix} \Leftrightarrow \begin{cases} c = 0.75 c + 0.125 (1-c) \\ 1-c = 0.25 c + 0.875 (1-c) \end{cases} \Leftrightarrow \begin{cases} c = 0.75 c + 0.125 c = 0.125 \\ 1-0.875 = c + 0.25 c = 0.875 c \end{cases} \Leftrightarrow \begin{cases} 0.375 c = 0.125 \\ 0.125 = 0.375 c \end{cases} \Leftrightarrow \begin{cases} 0.375 c = 0.125 \\ 0.125 = 0.375 c \end{cases} \Leftrightarrow \begin{cases} c = \frac{128}{375} = \frac{1}{3} \end{cases}$$

$$E = \left(\frac{1}{3} \quad \frac{2}{3}\right)$$

$$E = \left(\frac{1}{3} \quad \frac{2}{3}\right)$$

3.b. L'affirmation est justifiée car $\frac{2}{3} = 2 \times \frac{1}{3}$.