Meilleur en maths ES Nouvelle- Calédonie novembre 2013

Candidats ayant suivi l'enseignement de spécialité Exercice 3 5 points

Dans la commune de girouette, deux partis s'affrontent aux élections tous les ans.

En 2010, le parti Hirondelle l'a emporté avec 70 % des voix contre 30 % au parti Phénix. On admet qu'à partir de l'année 2010 :

- . 14 % des électeurs votant pour le parti Hirondelle à une élection voteront pour le parti Phénix à l'élection suivante.
- . 6 % des électeurs votant pour le parti Phénix à une élection voteront pour le parti Hirondelle à l'élection suivante.

Les autres ne changent pas d'avis.

On considère un électeur de Girouette choisi au hasard.

On note H l'état « L'électeur vote pour le parti Hirondelle » et P l'état « L'électeur vote pour le parti Phénix ».

- **1.a.** Représenter le graphe probabiliste associé à cette situation.
 - **b.** Déterminer la matrice de transition M en considérant les états dans l'ordre alphabétique.
- 2. On appelle $E_n = \begin{pmatrix} h_n & p_n \end{pmatrix}$ la matrice ligne de l'état probabiliste de l'année 2010+n. On donne $E_0 = (0,7 \quad 0,3)$. Déterminer E₁ et E₄ (on arrondira les coefficient de E₄ au centième).

Interpréter les résultats.

- **3.a.** Montrer que pour tout entier naturel n, on a : $h_{n+1} = 0.8 h_n + 0.06$
 - **b.** On définit la suite (u_n) par : pour tout entier naturel n, $u_n = h_n 0.3$ Montrer que la suite (u_n) est une suite géométrique.
 - c. Montrer que pour tout entier naturel n, $h_n = 0.3 + 0.4 \times 0.8^n$.
- 4. A partir de combien d'années la probabilité qu'un électeur choisi au hasard vote pour le parti Hirondelle sera-t-elle strictement inférieure à 0,32 ?

CORRECTION

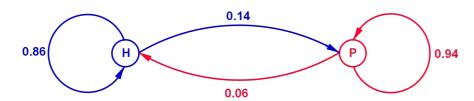
- **1.a.** On note les sommets du graphe : H et P.
 - H: « l'électeur vote pour le parti Hirondelle »
 - P: « l'électeur vote pour le parti Phénix »
 - . 14 % des électeurs votant pour le parti Hirondelle à une élection voteront pour le parti Phénix à l'élection suivante (les autres ne changent pas d'avis donc 86 % voteront pour le parti Hirondelle à l'élection suivante).

Conséquence

- Le poids de l'arête HP est 0,14.
- Le poids de l'arête HH est 0,86.
- . 6 % des électeurs votant pour le parti Phénix à une élection voteront pour le parti Hirondelle à l'élection suivante (les autres ne changent pas d'avis donc 96 % voteront pour le parti Phénix à l'élection suivante).

Conséquence

- Le poids de l'arête PH est 0,06.
- Le poids de l'arête PP est 0,94.
- On obtient le graphe probabiliste suivant :



- **b.** L'ordre des sommets est H puis P.
 - La matrice de transition M du graphe probabiliste est une matrice carrée 2×2 .

$$\mathbf{M} = \begin{pmatrix} \mathbf{m}_{11} & \mathbf{m}_{12} \\ \mathbf{m}_{21} & \mathbf{m}_{22} \end{pmatrix}$$

- m₁₁ est le poids de l'arête HH : 0,86.
- m₁₂ est le poids de l'arête HP : 0,14.
- m₂₁ est le poids de l'arête PH : 0,06.

$$m_{22}$$
 est le poids de l'arête PP : 0,94.
 $M = \begin{pmatrix} 0,86 & 0,14 \\ 0,06 & 0,94 \end{pmatrix}$

2. $E_0 = (h_0 p_0) = (0.7 0.3)$

$$\mathbf{E}_1 = (\mathbf{h}_1 \quad \mathbf{p}_1) = \mathbf{E}_0 \times \mathbf{M}$$

$$E_{1} = \begin{pmatrix} h_{1} & p_{1} \end{pmatrix} = E_{0} \times M$$

$$E_{1} = \begin{pmatrix} 0.7 & 0.3 \end{pmatrix} \begin{pmatrix} 0.86 & 0.14 \\ 0.06 & 0.94 \end{pmatrix} = \begin{pmatrix} 0.7 \times 0.86 + 0.3 \times 0.06 & 0.7 \times 0.14 + 0.3 \times 0.94 \end{pmatrix}$$

$$E_1 = (0.602 + 0.018 \quad 0.098 + 0.282) = (0.62 \quad 0.38)$$

$$E_4 = E_0 \times M^4$$

En utilisant la calculatrice on obtient :

$$M^4 = \begin{pmatrix} 0.59 & 0.41 \\ 0.18 & 0.82 \end{pmatrix}$$

$$M^{4} = \begin{pmatrix} 0.59 & 0.41 \\ 0.18 & 0.82 \end{pmatrix}$$

$$E^{4} = \begin{pmatrix} 0.7 & 0.3 \end{pmatrix} \begin{pmatrix} 0.59 & 0.41 \\ 0.18 & 0.82 \end{pmatrix} = \begin{pmatrix} 0.46 & 0.54 \end{pmatrix}$$

Conclusion

En 2014=2010+4, la probabilité qu'un électeur de Girouette pris au hasard vote pour le parti Hirondelle est 0,46 (donc 0,54 pour le parti Phénix).

Le parti Phénix sera majoritaire en 2014.

3.a. Pour tout entier naturel n, on a : $h_n + p_n = 1$ et

$$(h_{n+1} - p_{n+1}) = (h_n - p_n) \begin{pmatrix} 0.86 & 0.14 \\ 0.06 & 0.94 \end{pmatrix} = (h_n \times 0.86 + p_n \times 0.06 - h_n \times 0.14 + p_n \times 0.94)$$
et $h_{n+1} = 0.86 h_n + 0.06 p_n$ or $p_n = 1 - h_n$

donc $h_{n+1} = 0.86 h_n + 0.06 (1 - h_n) = 0.8 h_n + 0.06$

b. Pour tout entier naturel n

$$\begin{array}{l} u_n\!=\!h_n\!-\!0.3 \quad (\;donc \quad h_n\!=\!u_n\!+\!0.3\;) \\ u_{n+1}\!=\!h_{n+1}\!-\!0.3\!=\!(\;0.8\,h_n\!+\!0.06\;)\!-\!0.3\!=\!0.8\,h_n\!-\!0.24\!=\!0.8\,(u_n\!+\!0.3\;)\!-\!0.24\!=\!0.8\,u_n\!+\!0.24\!-\!0.24\\ u_{n+1}\!=\!0.8\,u_n \end{array}$$

Conséquence

La suite (u_n) est une suite géométrique de raison : q = 0.8

c. $u_0 = h_0 - 0.3 = 0.7 - 0.3 = 0.4$

Pour tout entier naturel n

$$u_n = u_0 \times q^n = 0.4 \times 0.8^n$$

Or on a:
$$h_n = u_n + 0.3$$

done
$$h_n = 0.4 \times 0.8^n + 0.3$$

4. On nous demande de résoudre l'inéquation $h_n < 0.32$ où l'inconnue est l'entier naturel n.

$$0.4 \times 0.8^{\text{n}} + 0.3 < 0.32 \Leftrightarrow 0.4 \times 0.8^{\text{n}} < 0.02 \Leftrightarrow 0.8^{\text{n}} < \frac{0.02}{0.4} = 0.05$$

In est une fonction strictement croissante sur $]0;+\infty[$

$$\Leftrightarrow \ln(0.8^{\mathrm{n}}) < \ln(0.05) \Leftrightarrow n \times \ln(0.8) < \ln(0.05)$$

$$0 < 0.8 < 1$$
 donc $\ln(0.8) < 0$

$$\Leftrightarrow n > \frac{\ln(0,05)}{\ln(0,8)}$$

En utilisant la calculatrice on obtient : n>13,43.

Le plus petit entier naturel solution de l'inéquation est n = 14.

Conclusion

En 2010+14=2024, la probabilité qu'un électeur choisi au hasard vote pour le parti hirondelle sera strictement inférieure à 0,32.