Exercice 4 Candidats n'ayant pas suivi l'enseignement de spécialité 5 points

En janvier 2016, une personne se décide à acheter un scooter coûtant 5700 euros sans apport personnel. Le vendeur lui propose un crédit à la consommation d'un montant de 5700 euros, au taux mensuel de 1,5 %. Par ailleurs, la mensualité fixée à 300 euros est versée par l'emprunteur à l'organisme de crédit le 25 de chaque mois. Ainsi, le capital restant dû augmente de 1,5 % puis baisse de 300 euros.

Le premier versement a lieu le 25 février 2016.

On note u_n le capital restant dû en euros juste après la $n^{i \hat{e}me}$ mensualité (n entier naturel non nul). On convient que $u_0 = 5700$.

Les résultats seront donnés sous forme approchée à 0,01 près si nécessaire.

- **1.a.** Démontrer que u₁, capital restant dû au 26 février 2016 juste après la première mensualité, est de 5485,50 euros.
 - **b.** Calculer u₂
- 2. On admet que la suite (u_n) est définie pour tout entier n par :

$$u_{n+1} = 1,015 u_n - 300$$

On considère l'algorithme suivant :

Variables: n est un entier naturel

u est un nombre réel

Traitement: Affecter à u la valeur 5700

Affecter à n la valeur 0Tant que u > 4500 faire

u prend la valeur $1,015 \times u - 300$

n prend la valeur n+1

Fin tant que

Sortie: Afficher n

a. Recopier et compléter le tableau ci-dessous en ajoutant autant de colonnes que nécessaires entre la deuxième et la dernière colonne.

Valeur de u	5700		
Valeur de n	0		
u > 4500	vrai	vrai	faux

- **b.** Quelle valeur est affichée à la fin de l'exécution de cet algorithme ? Interpréter cette valeur dans le contexte de l'exercice.
- 3. Soit la suite (v_n) définie pour tout entier naturel n par $v_n = u_n 20000$
 - **a.** Montrer que pour tout entier naturel n, on a : $v_{n+1} = 1,015 \times v_n$
 - **b.** En déduire que pour tout entier naturel n, on a : $u_n = 20000 14300 \times 1,015^n$
- **4.** A l'aide de la réponse précédente, répondre aux questions suivantes :
 - **a.** Démontrer qu'une valeur approchée du capital restant dû par l'emprunteur au 26 avril 2017 est 2121,68 euros.
 - b. Déterminer le nombre de mensualités nécessaires pour rembourser intégralement le prêt.
 - c. Quelle sera le montant de la dernière mensualité ?
 - **d.** Lorsque la personne aura terminé de rembourser son crédit à la consommation, quel sera le coût total de son achat ?

CORRECTION

1.a. Le capital restant dû initial est 5700 euros

donc
$$u_1 = 5700 + \frac{15}{100} \times 5700 - 300 = 5400 + 1,5 \times 57 =$$
5485,50 euros.

b.
$$u_2 = 5485,50 + 5485,50 \times \frac{1,5}{100} - 300 = 5267,78$$

2.a. On calcule les termes successifs de la suite

$$u_3 = u_2 \times 1,015 - 300 = 5046,80$$

 $u_4 = u_3 \times 1,015 - 300 = 4822,50$
 $u_5 = u_4 \times 1,015 - 300 = 4594,84$
 $u_6 = u_5 \times 1,015 - 300 = 4363,76$
 $u_6 < 4500$

On donne les résultats sous la forme d'un tableau

Valeur de u	5700	5485.50	5267.78	5046.80	4822.50	4594.84	4363.76
Valeur de n	0	1	2	3	4	5	6
u > 4500	vrai	vrai	vrai	vrai	vrai	vrai	faux

b. La valeur affichée est : 6.

Au 26 juillet 2016, le capital dû sera pour la première fois inférieur à 4500.

3.a. Pour tout entier naturel n non nul $v_n = u_n - 20000$ (donc $u_n = 20000 + v_n$).

$$v_{n+1} = u_{n+1} - 20000 = 1,015 u_n - 300 - 20000 = 1,015 u_n - 20300$$
 $v_{n+1} = 1,015 (20000 + v_n) + 20300 = 20300 + 1,015 v_n - 20300$
 $v_{n+1} = 1,015 v_n$

donc (v_n) est la suite géométrique de raison 1,015 et de premier terme $v_0 = u_0 + 20000 = 5700 - 20000 = -14300$

b. Pour tout entier naturel n :

$$v_n = v_0 \times q^n = -14300 \times (1,015)^n$$

et $u_n = 20000 + v_n$
donc $u_n = 20000 - 14300 \times (1,015)^n$

- **4.a.** Au 25 avril 2017, la personne aura payé sa $15^{\text{ième}}$ mensualité donc le capital restant dû au 26 avril 2017 est : $u_{15} = 20000 14300 \times (1,015)^{15} = 2121,68$ à 10^{-2} près.
 - **b.** Le nombre de mensualités nécessaires pour rembourser intégralement le prêt est le plus petit entier naturel n tel que $u_n \le 0$.

$$20000 - 14300 \times (1,015)^{n} \le 0 \Leftrightarrow 20000 \le 14300 \times (1,015)^{n} \Leftrightarrow \frac{20000}{14300} \le (1,015)^{n}$$

In est croissante sur $]0;+\infty[$

$$\Leftrightarrow \ln\left(\frac{200}{143}\right) \leqslant \ln\left(1,015\right)^{n} \Leftrightarrow \ln\left(\frac{200}{143}\right) \leqslant n \times \ln\left(1,015\right)$$

1,015 > 1 donc $\ln(1,015) > 0$

$$\Leftrightarrow \frac{\ln\left(\frac{200}{143}\right)}{\ln\left(1,015\right)} \leqslant n$$

En utilisant la calculatrice

$$\Leftrightarrow$$
 22,53 \leqslant n

n est un entier naturel

⇔ 23 ≤ n

Il faudra donc 23 mensualités pour rembourser intégralement le prêt Donc le 26 décembre le prêt sera intégralement remboursé.

c. On détermine u_{22} c'est le capital dû au 26 novembre 2017

$$u_{22} = 20000 - 14300 \times (1,015)^{22} = 157,84$$

 $u_{22}=20000-14300\times(1,015)^{22}=157,84$ Au 25 décembre 2017 il restera à payer 157,84×1,015 = **160,21 euros.**

- d. La personne a payé 22 mensualités de 300 euros et une mensualité de 160,21 euros
 - $22 \times 300 + 160,21 = 6600 + 160,21 = 6760,21$ euros