

Continuité sur un intervalle.

1.	. Continuité d'une fonction	 p2
2.	Le théorème des valeurs intermédiaires	 p5

1. Continuité d'une fonction

1.1. Continuité en un point

<u>Définition</u>: Soit f une fonction définie sur un ensemble D_f , et soit a un réel appartenant à D_f .

On dit que f est continue en a lorsque $\lim_{x \to a} f(x) = f(a)$

Exemple

 $f(x)=x^2$ est continue en 2 puisque $\lim_{x\to 2} f(x)=2^2=f(2)$

Plus généralement, $f(x)=x^2$ est continue en toute valeur a réelle, puisque $\lim_{x\to a} f(x)=a^2=f(a)$.

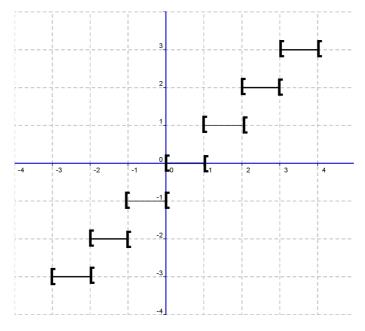
1.2. Cas particulier à connaître : la fonction partie entière

<u>Définition</u>: La <u>fonction partie entière</u> est définie sur \mathbb{R} par $x \mapsto E(x)$ E(x) étant le plus grand entier relatif inférieur ou égal à x.

$$E(2,3)=2$$
 $E(0,15)=0$ $E(-0,7)=-1$ $E(-3,3)=-4$

<u>Proposition:</u> Soit *n* un entier relatif. Si $x \in [n; n+1[$, alors E(x)=n.

<u>Démonstration</u>: C'est une application directe de la définition : si $x \in [n; n+1[$, alors le plus grand entier relatif inférieur ou égal à x est n, donc E(x) = n.



Proposition: La fonction partie entière n'est pas continue en 1.

Démonstration : Montrons que E n'est pas continue en 1.

 $-\operatorname{Si} x \in [0;1[$, alors E(x)=0 donc $\underset{x\to 1}{\operatorname{IIII}}$

- Si $x \in [1; 2[$, alors E(x) = 1 donc $\lim_{\substack{x \to 1 \\ x > 1}} E(x) = 1$ Puisque $\lim_{\substack{x \to 1 \\ x < 1}} E(x) \neq \lim_{\substack{x \to 1 \\ x > 1}} E(x)$, on en déduit que $\lim_{x \to 1} E(x) = 0$ n'existe pas, donc la fonction partie entière n'est pas continue en 1.

<u>Proposition:</u> La fonction partie entière n'est continue en aucune valeur p, entier relatif.

<u>Démonstration</u>: Montrons que E n'est pas continue en p.

- Si $x \in [p-1; p[$, alors E(x) = p-1 done $\lim_{\substack{x \to p \\ x < p}} E(x) = p-1$

 $-\operatorname{Si} x \in [p; p+1[, \operatorname{alors} E(x) = p \operatorname{donc} \lim_{\substack{x \to p \\ x > p}} E(x) = p$ $\operatorname{Puisque} \lim_{\substack{x \to p \\ x < p}} E(x) \neq \lim_{\substack{x \to p \\ x > p}} E(x), \text{ on en déduit que } \lim_{\substack{x \to p \\ x > p}} E(x) = 0 \text{ n'existe pas, donc la fonction partie entière n'est}$ pas continue en p

1.3. Continuité sur un intervalle

<u>Définition</u>: Soit f une fonction définie sur un intervalle I. On dit que f est <u>continue</u> sur I lorsque f est continue en toute valeur a appartenant à I.

Exemples

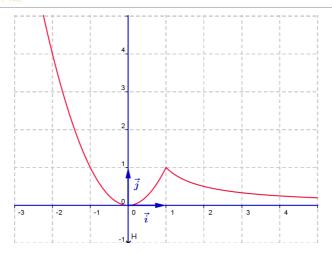
- Les fonctions polynômes sont continues sur R.
- Les fonctions rationnelles sont continues sur tout intervalle I inclus dans leur ensemble de définition.
- La fonction racine carrée est continue sur $[0; +\infty[$.

Interprétation graphique Remarque

Une fonction continue sur un intervalle I est une fonction dont on trace la courbe représentative sans lever le crayon.

$$f(x) = \begin{cases} x^2 \sin x < 1 \\ \frac{1}{x} \sin x \ge 1 \end{cases}$$

Montrer que f est continue sur \mathbb{R} .



Démonstration:

- f est continue sur]-∞;1[en tant que fonction polynôme $(f(x)=x^2)$.
- f est aussi continue sur $[1; +\infty[$ en tant que fonction rationnelle $(f(x)=\frac{1}{x})$.

Reste à voir si f est continue en 1.

$$-\lim_{\substack{x\to 1\\x<1}} f(x) = \lim_{\substack{x\to 1\\x<1}} x^2 = 1,$$

$$-\lim_{\substack{x\to 1\\x>1}} f(x) = \lim_{\substack{x\to 1\\x>1}} \frac{1}{x} = \frac{1}{1} = 1,$$

$$- f(1) = \frac{1}{1} = 1$$

donc $\lim_{x\to 1} f(x) = 1 = f(1)$, et f est alors continue en 1.

On en déduit que f est continue sur \mathbb{R} .

1.4. Propriétés des fonctions continues

La <u>somme</u> et le <u>produit</u> de deux fonctions continues sur un intervalle est continue sur cet intervalle.

Si f et g sont continues en x_0 et si $g(x_0) \neq 0$ alors $\frac{f}{g}$ est continue sur x_0 .

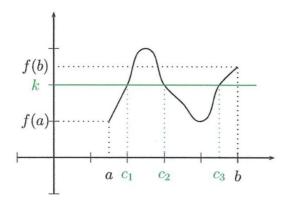
Si f est continue en x_0 et si g est continue en $f(x_0)$ alors $f \circ g$ est continue sur x_0 .

2. Le théorème des valeurs intermédiaires

2.1. Théorème

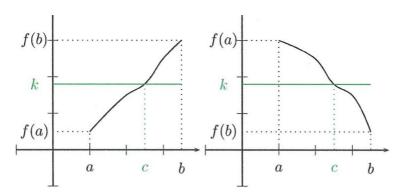
Ce théorème est admis. On le nomme théorème des valeurs intermédiaires.

Soit f une fonction définie et continue sur un intervalle [a; b]. Alors, pour toute valeur k comprise entre f(a) et f(b), l'équation f(x)=k possède au moins solution $c \in [a;b]$.



2.2. Corollaire : le théorème de la bijection

Soit f une fonction continue et strictement monotone sur un intervalle [a; b]. Alors, pour toute valeur k comprise entre f(a) et f(b), l'équation f(x)=k possède une unique solution $c \in [a;b]$.



Démonstration:

On sait déjà, d'après le théorème des valeurs intermédiaires, que l'équation f(x)=k possède au moins une solution $c \in [a;b]$.

Il reste à montrer que cette solution est unique.

On suppose donc (raisonnement par l'absurde) que l'équation f(x)=k possède une deuxième solution $d \in [a;b]$, avec $c \neq d$.

On a alors f(c) = f(d) = k, avec $c \neq d$ ce qui contredit le fait que f est strictement monotone sur [a;b].

On en déduit que d n'existe pas et que la solution c est unique.

Exemple

g est une fonction dont on connaît le tableau de variation.

Par convention, les flèches obliques du tableau de variation traduisent la continuité et la stricte monotonie de *g* sur les intervalles considérés.

х	-7	-1	3	9
f(x)	5	▲ -1	1 0	5

Déterminer le nombre de solutions de l'équation g(x)=2.

Sur l'intervalle [-7; -1], g est continue et strictement décroissante.

L'image de [-7; -1] par g est [-1; 5], et $2 \in [-1; 5]$, donc d'après le théorème de la bijection, l'équation g(x)=2 possède une solution unique $\alpha \in [-7; -1]$.

Sur l'intervalle [-1; 3], g est continue et strictement croissante.

L'image de [-1; 3] par g est [-1; 10], et $2 \in [-1; 10]$, donc d'après le théorème de la bijection, l'équation g(x)=2 possède une solution unique $\beta \in [-1; 3]$.

Sur l'intervalle [3; 9], g est continue et strictement décroissante.

L'image de [3; 9] par g est [5; 10], et $2 \notin [5; 10]$, donc l'équation g(x)=2 ne possède pas de solution dans [3;9].

En résumé, l'équation g(x)=2 possède deux solutions α et β .