

Exercice

Soit f la fonction définie sur \mathbb{R} par $f(x) = \cos^3(x) - \sin(3x)$.

Calculer
$$f(0)$$
, $f\left(\frac{\pi}{4}\right)$, $f\left(\frac{\pi}{2}\right)$ et $f(\pi)$.

En déduire que f s'annule au moins trois fois entre 0 et π .

Correction:

$$f(0) = \cos^3(0) - \sin(3 \times 0)$$

$$f(0) = 1$$

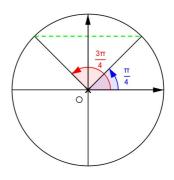
$$f\left(\frac{\pi}{4}\right) = \cos^3\left(\frac{\pi}{4}\right) - \sin\left(3 \times \frac{\pi}{4}\right)$$

$$f\left(\frac{\pi}{4}\right) = \left(\frac{\sqrt{2}}{2}\right)^3 - \sin\left(\frac{\pi}{4}\right)$$
$$f\left(\frac{\pi}{4}\right) = \frac{2\sqrt{2}}{8} - \frac{\sqrt{2}}{2}$$

$$f\left(\frac{\pi}{4}\right) = \frac{2\sqrt{2}}{8} - \frac{\sqrt{2}}{2}$$

$$f\left(\frac{\pi}{4}\right) = \frac{-2\sqrt{2}}{8}$$

$$\frac{f\left(\frac{\pi}{2}\right) = \cos^3(\pi/2) - \sin\left(3 \times \frac{\pi}{2}\right)}{\left[f\left(\frac{\pi}{2}\right) = 1\right]}$$



$$\frac{f(\pi) = \cos^3(\pi) - \sin(3 \times \pi)}{f(\pi) = -1}$$

f est définie et continue sur $\left[0; \frac{\pi}{4}\right]$. f(0) > 0 et $f\left(\frac{\pi}{4}\right) < 0$ donc d'après <u>le théorème des valeurs</u> <u>intermédiaires</u>, il existe au moins une valeur $x_1 \in \left[0; \frac{\pi}{4}\right]$ telle que $f(x_1) = 0$

f est définie et continue sur $\left[\frac{\pi}{4}; \frac{\pi}{2}\right]$. $f\left(\frac{\pi}{4}\right) < 0$ et $f\left(\frac{\pi}{2}\right) > 0$ donc d'après <u>le théorème des valeurs</u> <u>intermédiaires</u>, il existe au moins une valeur $x_2 \in \left[\frac{\pi}{4}; \frac{\pi}{2}\right]$ telle que $f(x_2)=0$

f est définie et continue sur $\left[\frac{\pi}{2};\pi\right]$. $f\left(\frac{\pi}{2}\right)>0$ et $f(\pi)<0$ donc d'après <u>le théorème des valeurs</u> <u>intermédiaires</u>, il existe au moins une valeur $x_3 \in \left[\frac{\pi}{2}; \pi\right]$ telle que $f(x_3) = 0$

Donc, f s'annule au moins trois fois entre 0 et π .