

Exercice

Étude et représentation graphique sur IRdes fonctions suivantes.

1.
$$f(x) = 4\sin\left(\frac{x}{2} + \frac{\pi}{3}\right)$$

1.
$$f(x) = 4\sin\left(\frac{x}{2} + \frac{\pi}{3}\right)$$

2.
$$g(x) = 3\cos\left(2x + \frac{3\pi}{4}\right)$$

Correction:

1.
$$f(x) = 4\sin\left(\frac{x}{2} + \frac{\pi}{3}\right)$$

$$f$$
 est périodique de période
$$T = \frac{2\pi}{\frac{1}{2}} = 4\pi$$

On étudie f sur <u>un intervalle de période d'amplitude</u> 4π . On choisit $I = [0; 4\pi]$. Puis on obtiendra la courbe représentative sur IR

f est dérivable sur \mathbb{R}

$$f'(x) = \frac{1}{2} \times 4\cos\left(\frac{x}{2} + \frac{\pi}{3}\right)$$

On pose
$$X = \frac{x}{2} + \frac{\pi}{3}$$
.

$$\cos X \geqslant 0 \Leftrightarrow -\frac{\pi}{2} + 2k \, \pi \leqslant X \leqslant \frac{\pi}{2} + 2k \, \pi \,, \ k \in \mathbb{Z}$$

$$f'(x) \ge 0 \iff -\frac{\pi}{2} + 2k \pi \le \frac{x}{2} + \frac{\pi}{3} \le \frac{\pi}{2} + 2k \pi$$

$$\Leftrightarrow -\frac{\pi}{2} - \frac{\pi}{3} + 2k \pi \le \frac{x}{2} \le \frac{\pi}{2} - \frac{\pi}{3} + 2k \pi$$

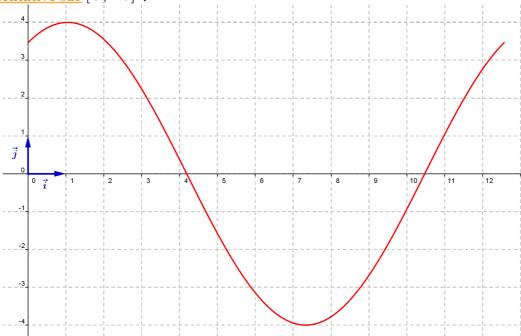
$$\Leftrightarrow$$
 $-\frac{5\pi}{6} + 2k\pi \leqslant \frac{x}{2} \leqslant \frac{\pi}{6} + 2k\pi$

$$\Leftrightarrow$$
 $-\frac{5\pi}{3} + 4k \pi \leqslant x \leqslant \frac{\pi}{3} + 4k \pi$

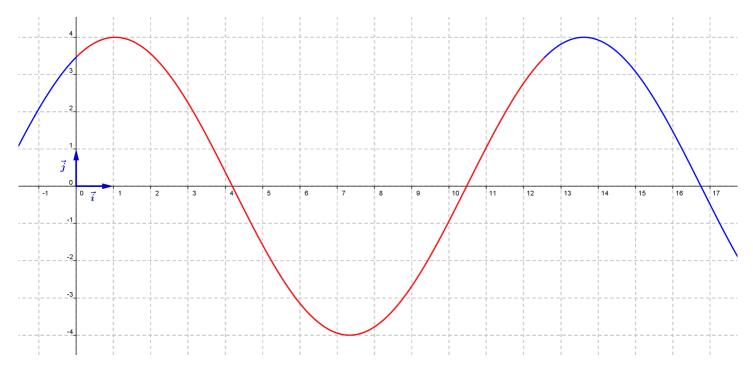
Les solutions sur l'intervalle $I = [0; 4\pi]$ $\mathcal{S} = \left[0; \frac{\pi}{3}\right] \cup \left[\frac{7\pi}{3}; 4\pi\right]$

$$\mathcal{S} = \left[0; \frac{\pi}{3}\right] \cup \left[\frac{7\pi}{3}; 4\pi\right]$$

Tableau de variations sur $[0; 4\pi]$:


х	0	$rac{\pi}{3}$		$\frac{7\pi}{3}$	4π
Signe de f'(x)	+	0	_	0	+
Variations de f(x)	$2\sqrt{3}$	4		_4 /	2√

$$f(0) = f(4\pi) = 4\sin\left(\frac{\pi}{3}\right) = 2\sqrt{3}$$
 $f\left(\frac{\pi}{3}\right) = 4\sin\frac{\pi}{2} = 4$ $f\left(\frac{7\pi}{3}\right) = 4\sin\frac{3\pi}{2} = -4$


$$f\left(\frac{\pi}{3}\right) = 4\sin\frac{\pi}{2} = 4$$

$$f\left(\frac{7\pi}{3}\right) = 4\sin\frac{3\pi}{2} = -4$$

<u>Courbe représentative sur</u> ℝ :

2.
$$g(x) = 3\cos\left(2x + \frac{3\pi}{4}\right)$$

g est <u>périodique de période</u> $T = \frac{2\pi}{2} = \pi$.

On étudie g sur <u>un intervalle de période d'amplitude</u> π . On choisit $[0;\pi]$. Puis on obtiendra la courbe représentative sur $\mathbb R$

g est dérivable sur \mathbb{R}

$$g'(x) = -2 \times 3\sin\left(2x + \frac{3\pi}{4}\right)$$

On pose $X = 2x + \frac{3\pi}{4}$.

$$\sin X \ge 0 \Leftrightarrow 0 + 2k\pi \le X \le \pi + 2k\pi, k \in \mathbb{Z}$$

$$f'(x) \le 0 \iff 0 + 2k\pi \le 2x + \frac{3\pi}{4} \le \pi + 2k\pi$$

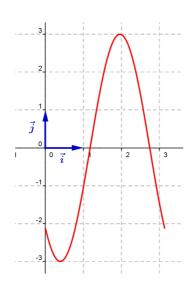
$$\Leftrightarrow -\frac{3\pi}{4} + 2k \pi \leq 2x \leq \pi - \frac{3\pi}{4} + 2k \pi$$

$$\Leftrightarrow$$
 $-\frac{3\pi}{4} + 2k \pi \leqslant 2x \leqslant \frac{\pi}{4} + 2k \pi$

$$\Leftrightarrow -\frac{3\pi}{8} + k \pi \leqslant x \leqslant \frac{\pi}{8} + k \pi$$

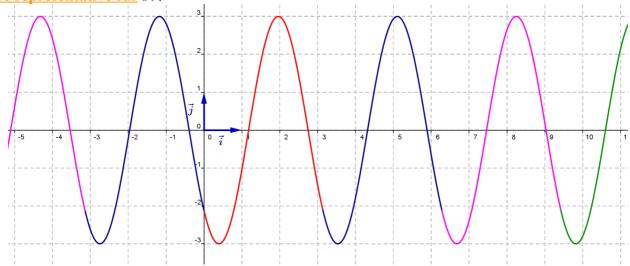
Les solutions sur l'intervalle $[\,0\,;\pi]$

$$\mathcal{S} = \left[0; \frac{\pi}{8}\right] \cup \left[\frac{5\pi}{8}; \pi\right]$$


Tableau de variations sur $[O;\pi]$:

х	0	$\frac{\pi}{8}$		$\frac{5\pi}{8}$		π
Signe de g ' (x)	_	0	+	0	-	
Variations de g(x)	$-\frac{3\sqrt{2}}{2}$			✓ ³ ✓	$-\frac{3}{2}$	$\overline{2}$

$$g(0)=3\cos\frac{3\pi}{4}=\frac{-3\sqrt{2}}{2}=g(\pi)$$


$$g\left(\frac{\pi}{8}\right) = 3\cos\pi = -3 \text{ et } g\left(\frac{5\pi}{8}\right) = 3\cos 2\pi = 3.$$

Courbe représentative sur $I = [0; \pi]$.

Fonctions sinus et cosinus.

Courbe représentative sur \mathbb{R} :

