

Exercice

Vrai ou faux

Soient f et g deux fonctions définies sur un intervalle de la forme $]a;+\infty[$, où a est un nombre réel. On suppose que f et g possèdent chacune une limite en $+\infty$ (égale à un réel, ou à $+\infty$, ou à $-\infty$). Répondre par vrai ou par faux aux affirmations suivantes, en justifiant la réponse :

1. Si
$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} g(x)$$
 alors $\lim_{x \to +\infty} (f(x) - g(x)) = 0$

2. Si
$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} g(x)$$
 alors $\lim_{x \to +\infty} \frac{f(x)}{g(x)} = 1$

3. Si
$$\lim_{x \to +\infty} \frac{f(x)}{g(x)} = 1$$
, alors $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} g(x)$

4. Si
$$\lim_{x \to +\infty} x f(x) = 1$$
, alors $\lim_{x \to +\infty} f(x) = 0$.

5. Si,
$$\forall x \in]a; +\infty[$$
, $\frac{1}{x} \le f(x) \le 2 + \frac{1}{x}$, alors $\lim_{x \to +\infty} f(x) = l$, avec $l \in [0;2]$.

Correction:

1. **FAUX**

Par exemple:

$$f(x)=x^3$$
 et $f(x)=x^2$
 $\lim_{x\to +\infty} f(x)=+\infty$ et $\lim_{x\to +\infty} g(x)=+\infty$

Or,
$$f(x) - g(x) = x^3 - x^2$$

$$\lim_{x \to +\infty} x^3 - x^2 = \lim_{x \to +\infty} x^3 = +\infty$$

2. FAUX

Par exemple:

$$f(x)=x^3$$
 et $f(x)=x^2$

$$\lim_{x \to +\infty} f(x) = +\infty \text{ et } \lim_{x \to +\infty} g(x) = +\infty$$

$$\frac{f(x)}{g(x)} = \frac{x^3}{x^2} = x \text{ et } \left[\lim_{x \to +\infty} x = +\infty \right]$$

3. VRAI

Si
$$g(x) \neq 0$$
, $f(x) = \frac{f(x)}{g(x)}g(x)$

Or,
$$\lim_{x \to +\infty} \frac{f(x)}{g(x)} = 1$$

Donc,
$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} g(x)$$

4. VRAI

Si x>0

$$f(x) = x f(x) \times \frac{1}{x}$$

Or,
$$\lim_{x \to +\infty} xf(x) = 1$$
 et $\lim_{x \to +\infty} \frac{1}{x} = 0$

Donc:
$$\lim_{x \to +\infty} f(x) = 0$$

5. VRAI

$$\lim_{x \to +\infty} \frac{1}{x} = 0 \text{ Or } \frac{1}{x} \leq f(x) \text{ donc } 0 \leq l$$

$$\lim_{x \to +\infty} 2 + \frac{1}{x} = 2 \text{ Or } f(x) \le 2 + \frac{1}{x} \text{ donc } f(x) \le 2$$

Donc
$$l \in [0;2]$$