

Exercice

Limite en une valeur réelle

Dans chacun des cas suivants, étudier la limite en a de la fonction f définie sur \mathcal{D} .

1.
$$f(x) = \frac{3x}{x-4}$$
, $a = 4$, $\mathcal{D} =]4; +\infty[$

2.
$$f(x) = \frac{3x}{x-4}$$
, $a=4$, $\mathcal{D}=]-\infty; 4[$

3.
$$f(x) = \frac{1}{x^2 - 1}$$
, $a = 1$, $\mathcal{D} =]-1;1[$

4.
$$f(x) = \frac{2x-1}{(x-2)^2}$$
, $a=2$, $\mathcal{D}=]-\infty;2[$

Correction:

- 1. $\lim_{x \to 4^+} x 4 = 0^+$
- $\lim 3x = 12$

 $x \rightarrow 4^{+}$

- Donc: $\lim_{x \to 4^+} \frac{3x}{x 4} = +\infty$
- 2. $\lim_{x \to 4^{-}} x 4 = 0^{-}$

$$x \rightarrow 4^{-}$$

$$\lim 3x = 12$$

 $x \rightarrow 4^{-}$

Donc:
$$\lim_{x \to 4^-} \frac{3x}{x - 4} = -\infty$$

- 3. $\lim_{x\to 1^{-}} x^2 1 = 0^{-}$
- Or, $\lim_{X\to 0^-} \frac{1}{X} = -\infty$
- Donc: $\lim_{x \to 1^{-}} \frac{1}{x^2 1} = -\infty$
- 4. $\lim_{x\to 2^{-}} 2x 1 = 5$
- $\lim x 2 = 0^{-}$
- Or $\lim_{X \to 0^{-}} X^2 = 0^{+}$
- Donc: $\lim_{x\to 2^{-}} (x-2)^2 = 0^+$
- Or, $\lim_{X\to 0^+} \frac{1}{X} = +\infty$
- Donc: $\lim_{x\to 2^{-}} \frac{1}{(x-2)^2} = +\infty$
- Par suite, $\lim_{x\to 2^-} \frac{2x-1}{(x-2)^2} = +\infty$