Exercice

Soit (u_n) la suite définie par $u_0=0$ et pour tout entier naturel $n: u_{n+1}=-1,5u_n+2,5$.

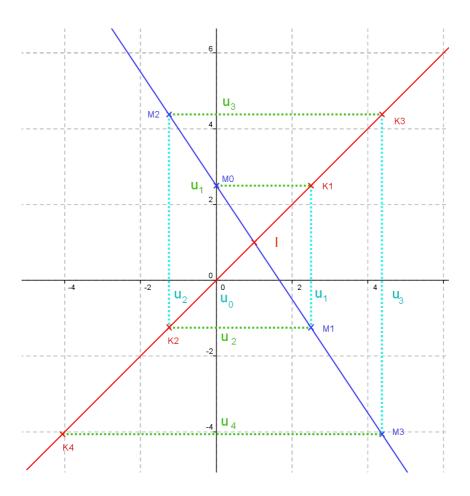
- a) Interprétation graphique
- b) Étudier les variations de (u_n) .
- c) Soit (v_n) la suite définie pour tout entier naturel n par : $v_n = 1 u_n$.

Démontrer que (v_n) est une suite géométrique dont on précisera le premier terme et la raison.

d) La suite (u_n) est-elle convergente?

Correction:

a)



Conjectures: (u_n) **n'est pas monotone**; (u_n) est **divergente**.

b)
$$u_0 = 0$$

$$u_1 = -1.5 u_0 + 2.5 = 2.5$$

$$u_2 = -1.5 \times 2.5 + 2.5 = -1.25$$

$$u_0 < u_1 \text{ et } u_1 > u_2$$

Donc la suite (u_n) <u>n'est pas monotone</u>.

c) Pour tout entier naturel n, $v_n = 1 - u_n$

$$v_{n+1} = 1 - u_{n+1}$$

$$v_{n+1} = 1 - (-1.5 u_n + 2.5)$$

$$v_{n+1} = -1.5 + 1.5 u_n$$

$$v_{n+1} = -1,5+1,5(1-v_n)$$

$$v_{n+1} = -1.5 + 1.5 - 1.5 v_n$$

$$v_{n+1} = -1.5 v_n$$

$$v_0 = 1 - u_0 = 1 - 0 = 1$$

Donc, (v_n) est <u>la suite géométrique</u> de <u>raison</u> q=-1,5 et de <u>premier terme</u> $v_0=1$.

d) Pour tout entier naturel n, $v_n = 1 \times (-1.5)^n = (-1.5)^n$, et donc $u_n = 1 - (-1.5)^n$.

$$(-1,5)^n = (-1)^n \times (1,5)^n$$

1,5>1 donc,
$$\lim_{n\to +\infty} (1,5)^n = +\infty$$

La suite (v_n) n'admet pas de limite donc (u_n) n'admet pas de limite.