Exercice ensembles de définition

Déterminer les ensembles de définition des fonctions suivantes :

a)
$$f(x) = \ln(x^2 - 1)$$
 et $g(x) = \ln(x - 1) + \ln(x + 1)$

b)
$$f(x) = \ln(2x^2 - x + 1)$$
 et $g(x) = \ln(-x^2 + 2x - 2)$

c)
$$f(x) = \ln(3x^2 - 5x + 2)$$
 et $g(x) = \ln\left(\frac{x - 1}{3x - 2}\right)$

d)
$$f(x) = \ln\left(\frac{2x^2 + x - 3}{4x - 1}\right)$$
 et $g(x) = \ln\left(\frac{-4x + 1}{2x^2 + x - 3}\right)$

Correction:

Pour toutes les fonctions, on notera D l'ensemble de définition.

a)
$$f(x) = \ln(x^2 - 1)$$

On pose
$$u(x)=x^2-1$$

 $f(x)=\ln(u(x))$

$$x \in D \Leftrightarrow u(x) > 0$$

u(x) est un trinôme dont les racines sont 1 et -1.

Х	- ∞		-1		1		+ ∞
signe de x ² - 1		+	0	_	0	+	

$$D =]-\infty; -1[\cup]1; +\infty[$$

$$g(x) = \ln(x-1) + \ln(x+1)$$

$$x \in D \Leftrightarrow \begin{cases} x-1>0 \\ x+1>0 \end{cases}$$

$$D=]1;+\infty[$$

b)
$$f(x) = \ln(2x^2 - x + 1)$$

$$u(x)=2x^2-x+1$$

$$\Delta = (-1)^2 - 4 \times 2 \times 1 = -7 < 0$$
 et 2>0

Donc, pour tout $x \in \mathbb{R}$, u(x) > 0

$$D=\mathbb{R}$$

$$g(x) = \ln(-x^2 + 2x - 2)$$

$$u(x) = -x^2 + 2x - 2$$

$$\Delta = 2^2 - 4 \times (-1) \times (-2) = -4 < 0$$

Donc, pour tout $x \in \mathbb{R}$, u(x) < 0

$$D = \emptyset$$

c)
$$f(x) = \ln(3x^2 - 5x + 2)$$

$$u(x) = 3x^2 - 5x + 2$$

$$u(x)=3x^2-5x+2$$

 $\Delta = (-5)^2-4\times 3\times 2=1$

$$x_1 = \frac{5-1}{6} = \frac{2}{3}$$
 et $x_2 = \frac{5+1}{6} = 1$

х	- ∞		<u>2</u> 3	1		+ ∞
signe de u(x)		+	0	<u> </u>	+	

$$D = \left[-\infty; \frac{2}{3} \right] \cup]1; +\infty[$$

$$g(x) = \ln\left(\frac{x-1}{3x-2}\right)$$

$$q(x) = \frac{x-1}{3x-2}$$

х	- ∞	$\frac{2}{3}$	1		+ ∞
signe de q(x)	+		– 0	+	

$$D = \left] -\infty; \frac{2}{3} \left[\cup \right] 1; +\infty \left[\right]$$

d)
$$f(x) = \ln\left(\frac{2x^2 + x - 3}{4x - 1}\right)$$

On pose
$$q(x) = \frac{2x^2 + x - 3}{4x - 1}$$

$$u(x)=2x^{2}+x-3$$

$$\Delta=1^{2}-4\times2\times(-3)=25$$

$$x_{1}=\frac{-1-5}{4}=\frac{-3}{2} \text{ et } x_{2}=\frac{-1+5}{4}=1$$

×	- ∞		- 3 2	<u>1</u> 4	1	+ ∞
signe de 2x ² +x-3		+	0	<u>+</u>	0	+
signe de 4x-1			-	0	+	
signe de q(x)		-	0	+	_ 0	+

$$4x-1=0 \iff x=\frac{1}{4}$$

$$D = \left| \frac{-3}{2}; \frac{1}{4} \right| \cup]1; +\infty[$$

$$g(x) = \ln\left(\frac{-4x+1}{2x^2+x-3}\right)$$

x	- ∞		$-\frac{3}{2}$	1/4		1		+ ∞
signe de 2x ² +x-3		+	0	_		0	+	
signe de -4x+1			+	0		-		
signe de Q(x)		+		- o	+		_	

$$D = \left] -\infty; -\frac{3}{2} \right[\cup \left] \frac{1}{4}; 1 \right[$$