

Suites arithmétiques et géométriques.

Exercice

On considère la suite (u_n) définie par $u_n = 5 - 3n$.

- 1. Calculer u_0 , u_1 et u_2 .
- 2. Démontrer que (u_n) est une suite arithmétique dont on précisera la raison.
- 3. Que vaut u_{60} ? Calculer la somme $S = u_0 + u_1 + ... + u_{60}$.

Correction:

1.
$$u_0 = 5 - 3 \times 0 = 5$$

$$u_1 = 5 - 3 \times 1 = 2$$

$$u_2 = 5 - 3 \times 2 = -1$$

2.
$$u_{n+1} - u_n = 5 - 3(n+1) - (5-3n) = -3n - 3 + 3n = -3$$

 $u_{n+1} = u_n - 3$

On passe de chaque terme au suivant <u>en ajoutant le même réel</u>: -3 donc (u_n) est <u>une suite arithmétique</u> de raison -3.

3.
$$u_{60} = u_0 + 60 \times (-3)$$

 $u_{60} = 5 - 180$
 $\boxed{u_{60} = -175}$

$$S = u_0 + u_1 + ... + u_{60} = 61 \times \frac{u_0 + u_{60}}{2}$$

$$S = u_0 + u_1 + ... + u_{60} = 61 \times \frac{u_0 + u_{60}}{2}$$

$$S = 61 \times \frac{5 - 175}{2} = 61 \times \left(-\frac{170}{2}\right) = 91 \times (-85) = -7735$$