

Suites arithmétiques et géométriques.

Exercice

La suite (u_n) est définie par $u_0=2$ et, pour tout n de \mathbb{N} , $u_{n+1}=3u_n-6$. On pose $v_n=u_n-3$.

- 1. Calculer u_1 , u_2 , u_3 puis v_1 , v_2 , v_3 .
- 2. Montrer que la suite (v_n) est géométrique. On précisera sa raison et son premier terme.
- 3. Exprimer v_n , puis u_n , en fonction de n.

Correction:

$$1. u_1 = 3 \times 2 - 6 = 0$$

$$u_2 = 3 \times 0 - 6 = -6$$

$$u_3 = 3 \times (-6) - 6 = -24$$

$$v_1 = 0 - 3 = -3$$

$$v_2 = -6 - 3 = -9$$

$$v_3 = -24 - 3 = -27$$

2.
$$v_{n+1} = u_{n+1} - 3$$

$$v_{n+1} = 3 u_n - 6 - 3$$

$$v_{n+1} = 3 u_n - 9$$

$$v_{n+1} = 3(u_n - 3)$$

$$v_{n+1}=3v_n$$

Donc (v_n) est <u>la suite géométrique</u> de <u>raison</u> 3 et de <u>premier terme</u> $v_0 = -1$

3.
$$v_n = v_0 \times 3^n = -1 \times 3^n = -3^n$$

Or,
$$u_{n} = v_{n} + 3$$

$$u_n = -3^n + 3$$