

Probabilités élémentaires

1.	Exemple.	p2	4. Lois de probabilité	p 7
2.	Vocabulaire	p4	5. Variables aléatoires	p8
3.	Espaces probabilisés finis	p4		

1. Exemple

On considère l'expérience aléatoire consistant à lancer deux pièces de monnaie bien équilibrées.

1.1. Simulation

On considère l'événement « Obtenir 2 fois pile » que l'on note 2P.

La simulation utilisant le tableau openOffice de dix séries de n lancers de deux pièces a permis d'obtenir, pour différentes valeurs de n, les fréquences de 2P suivantes :

n=100	0.22	0.27	0.32	0.19	0.25	0.25	0.20	0.26	0.25	0.27
n=1000	0.249	0.247	0.243	0.241	0.261	0.250	0.270	0.277	0.200	0.261
n=10000	0.255	0.254	0.253	0.255	0.244	0.247	0.237	0.252	0.243	0.242

Simulation:

A P, on associe 1 et à F, on associe 0.

En A_1 : =Alea.entre.bornes(0;1)

En B_1 : =Alea.entre.bornes(0;1)

En $C_1 : =A_1*B_1$

Pour 2P, on obtient 1 et pour PF ou 2F, on obtient 0.

En E_1 : =Somme(C_1 ; C_n)

En $E_2=E_1/n$

On obtient la fréquence en n épreuves.

On choisit $\Omega = \{2P; 2F; PF\}$ comme ensemble des résultats possibles ou ensemble des issues ou univers.

Étant donnés les résultats des simulations, on peut proposer comme loi de probabilité sur Ω :

ω_{i}	2P	2F	PF	
p _i	0.25	0.25	0.5	

1.2. En recherchant une situation d'équiprobabilité

La loi de probabilité est dite <u>équirépartie</u> lorsqu'elle associe la même probabilité à chaque issue.

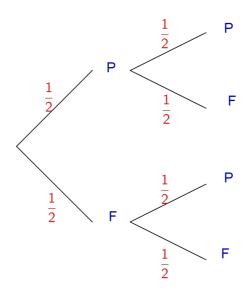
On choisit comme univers:

 $\Omega' = \{(P;P);(P;F);(F;P);(F;F)\}$

Pour cela, il suffit de différencier les 2 pièces.

ω_{i}	(P;P)	(P;F)	(F;P)	(F;F)
p _i	0.25	0.25	0.25	0.25

On peut représenter l'univers en utilisant un arbre.



1.3. Des autres événements

Soit D l'événement : « Obtenir un double » (obtenir 2 fois pile ou 2 fois face)

Soit E l'événement : « Obtenir au moins une fois pile »

Calculer les probabilités des événements : D ; E ; D∩E et D∪E

$$P(D)=P(P;P)+P(F;F)=\frac{1}{4}+\frac{1}{4}=\frac{1}{2}$$

$$P(D \cap E) = P(P; P) = \frac{1}{4}$$

$$P(D \cup E) = P(P; P) + P(F; F) + P(P; F) + P(F; P) = 1$$

1.4. Utilisation d'une variable aléatoire

Pour une mise de1€, un joueur est invité à lancer 2 pièces de monnaie. Il gagne 1€ pour chaque pile obtenu et perd 1€ s'il n'obtient aucun pile.

On désigne par X la variable aléatoire associant à chaque lancer le gain algébrique du joueur.

- a) Déterminer la loi de probabilité de X.
- b) Combien le joueur peut-il espérer gagner par partie ?

a) Pour (P;P) : 2-1=1€

Pour (P;F) : 1-1=0€

Pour (F;P) : 1-1=0€

Pour (F;F) : -1-1=-2€

x _i	-2	0	1
P(X=x _i)	0.25	0.5	0.25

b)
$$E(X) = -2 \times \frac{1}{4} + 0 \times \frac{1}{2} + 1 \times \frac{1}{4} = -0.25$$

Le joueur effectuant « un grand nombre de parties »peut espérer « gagner » en moyenne : -0,25€ , c'est à dire perdre 0,25€ par partie)

2. Vocabulaire

 $\Omega = \{\omega_1; \omega_2; ...; \omega_n\}$ ensemble fini est <u>l'univers</u>.

 ω_1 ; ω_2 ;...; ω_n sont <u>les éventualités (ou les issues)</u>.

Les parties de Ω (c'est à dire les éléments de $\mathcal{P}(\Omega)$) sont <u>les événements</u>.

 $\{\omega_i\}$ est un événement élémentaire que l'on confond souvent avec l'éventualité ω_i .

Ø est <u>l'événement impossible</u>.

 Ω est <u>l'événement certain</u>.

Si A est une partie non vide de Ω alors A est une réunion d'événements élémentaires.

Si A et B sont deux parties de Ω alors $A \cup B$ est l'événement A ou B et $A \cap B$ est l'événement A et B.

Si A est une partie de Ω et \overline{A} son complémentaire dans Ω alors \overline{A} est <u>l'événement contraire</u> de A.

Rappel:

Si \overline{A} est le complémentaire de A dans Ω alors \overline{A} est l'unique partie de Ω vérifiant : $\begin{cases} A \cup \overline{A} = \Omega \\ A \cap \overline{A} = \emptyset \end{cases}$

Si A et B sont deux parties de Ω telles que $A \cap B = \emptyset$ alors on dit que les événements A et B sont <u>incompatibles</u>.

3. Espaces probabilisés finis

3.1. Définition

 Ω est un ensemble fini. P est une application qui a toute partie de Ω associe un nombre réel compris entre 0 et 1. On dit que P est une probabilité sur Ω si et seulement si $P(\Omega)=1$ et pour tous événements A et B incompatibles $(A \cap B=\emptyset)$ on ait $P(A \cup B)=P(A)+P(B)$.

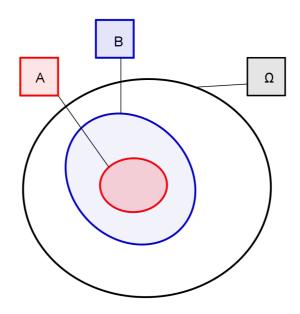
3.2. Propriétés

a) $\Omega \cup \emptyset = \Omega$ et $\Omega \cap \emptyset = \emptyset$

$$P(\Omega)=P(\Omega\cup\emptyset)=P(\Omega)+P(\emptyset)$$

Donc: $P(\emptyset)=0$

b) A et B sont deux événements et A⊂ B (c'est à dire tous les éléments de A appartiennent à B).



On pose
$$A_1 = \overline{A} \cap B$$

A₁ est l'ensemble des éléments de B n'appartenant pas à A.

Donc, B=A
$$\cup$$
($\overline{A} \cap B$)=A \cup A₁

On a
$$A \cap A_1 = A \cap (\overline{A} \cap B) = \emptyset$$

Donc,
$$P(B)=P(A \cup A_1)=P(A)+P(A_1)$$

Or, $P(A_1) \ge 1$ (la probabilité d'un événement est un nombre compris entre 0 et 1).

Donc, $P(B) \ge P(A)$

Si
$$A \subset B$$
 alors $P(A) \leq P(B)$

On dit que P est une fonction croissante.

c) Pour tout événement A, on a :

$$A \cup \overline{A} = \Omega$$
 et $A \cap \overline{A} = \emptyset$

$$P(\Omega)=P(A\cup \overline{A})=1=P(A)+P(\overline{A})$$

Donc,

$$P(\overline{A})=1-P(A)$$

Ou

$$P(A)=1-P(\overline{A})$$

d) Généralisation

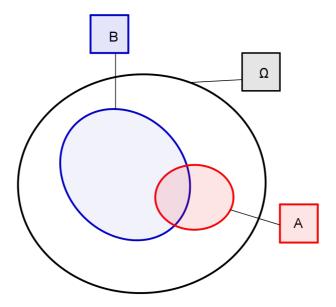
n est un entier naturel supérieur ou égal à 2.

Si A₁; A₂; A₃;...A_n sont *n* événements incompatibles 2 à 2 (c'est à dire pour tous entiers naturels distincts i et

j compris entre 1 et
$$n$$
 $A_i \cap A_j = \emptyset$) alors $P(\bigcup_{i=1}^n A_i) = \sum_{i=1}^n P(A_i)$

e) Probabilité d'une réunion de 2 événements

A et B sont deux événements. On veut déterminer la probabilité de $A \cup B$. On ne suppose pas que $A \cap B = \emptyset$



I=A∩B est l'ensemble des éléments communs à A et B.

 $I_1=A \cap \overline{B}$ est l'ensemble des éléments de A n'appartenant pas à B.

 $I_2 = \overline{A} \cap B$ est l'ensemble des éléments de B n'appartenant pas à A.

$$A \cup B = (A \cap B) \cup (A \cap \overline{B}) \cup (\overline{A} \cap B)$$

 $A \cup B = I \cup I_1 \cup I_2$

Les événements I ; I₁ et I₂ sont incompatibles deux à deux, donc :

$$P(A \cup B) = P(I) + P(I_1) + P(I_2)$$

Or,
$$A=(A\cap B)\cup (A\cap \overline{B})$$

Les deux événements (A \cap B) et (A \cap \overline{B}) sont incompatibles.

On obtient:

$$P(A)=P(A\cap B)+P(A\cap \overline{B})$$

Soit:

$$P(A \cap \overline{B}) = P(A) - P(A \cap B)$$

De même, $B=(A\cap B)\cup(\overline{A}\cap B)$

D'où, $P(B)=P(A\cap B)+P(\overline{A}\cap B)$

Soit:

 $P(\overline{A} \cap B)=P(B)-P(A \cap B)$

Conséquence :

 $P(A \cup B)=P(A \cap B)+P(A)-P(A \cap B)+P(B)-P(A \cap B)$

Conclusion:

 $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

4. Lois de probabilité

4.1. Cas général

$$\Omega = \{\omega_1; \omega_2; \dots; \omega_n\}$$

P est une probabilité sur Ω .

On note $\Pi_1 = P(\{\omega_1\}) = P(\omega_1)$; $\Pi_2 = P(\{\omega_2\}) = P(\omega_2)$; ...; $\Pi_n = P(\{\omega_n\}) = P(\omega_n)$.

Pour tout entier naturel i compris entre 1 et n, on a $1 \le \prod_{i \le n} n$

$$\Omega = \bigcup_{i=1}^{n} \{ \omega_i \}$$

Pour tous entiers naturels distincts i et j compris entre 1 et n., on a $\omega_i \neq \omega_i$ donc $\{\omega_i\} \cap \{\omega_i\} = \emptyset$.

$$P(\Omega) = P(\bigcup_{i=1}^{n} \{\omega_{i}\}) = \sum_{i=1}^{n} P(\{\omega_{i}\}) = \sum_{i=1}^{n} \Pi_{i} = 1$$

Donc:
$$\sum_{i=1}^{n} \Pi_{i} = 1$$

Conséquence:

Si on connaît les Π_i on est capable de calculer la probabilité de tout événement.

La donnée des Π_i est <u>la loi de probabilité</u>, on donne généralement la loi de probabilité sous forme de tableau.

ω	ω ₁	ω_2	ω_{n}
P(ω _i)	π ₁	π_2	π_{n}

Rappel:

Si on détermine les Π_i après expérimentation ou simulation, alors si p est la probabilité d'un événement et f_n la fréquence de réalisation de cet événement lorsqu'on répète l'expérience n fois, la distance $|f_n-p|$ reste, dans au

moins 95% des cas, inférieur à $\frac{1}{\sqrt{n}}$.

4.2. Probabilité uniforme ou loi équirépartie

On dit que la loi est équirépartie lorsque tous les événements élémentaires ont la même probabilité donc :

$$\Pi_1 = \Pi_2 = \dots = \Pi_n$$

Or,
$$\sum_{i=1}^{n} \Pi_{i} = 1 = n \Pi_{1}$$

Donc, pour tout entier naturel compris entre 1 et n:

$$P(\omega_i) = \frac{1}{n} = \frac{1}{card \ \Omega}$$

A est une partie de Ω .

Si
$$A = \emptyset$$
 alors $P(A) = 0$

Si A={
$$\omega_2$$
; ω_3 ; ω_6 } alors P(A)= $\Pi_2+\Pi_3+\Pi_6=\frac{1}{n}+\frac{1}{n}+\frac{1}{n}=\frac{3}{n}$

Donc,
$$P(A) = \frac{card A}{card \Omega}$$

Conséquence :

Si la loi est équirépartie alors résoudre un problème de probabilité revient à résoudre un problème de dénombrement.

5. Variables aléatoires

5.1. Exemple

On considère l'expérience aléatoire consistant à lancer trois pièces de monnaie bien équilibrées. Il y a 8 issues à cette expérience.

$$\Omega = \{PPP; PPF; PFP; FPP; FPF; FFP; FFF\}$$

On suppose que la loi est équirépartie (c'est à dire la probabilité de chaque issue est $\frac{1}{8}$).

Pour une mise de 1€, un joueur est invité à lancer 3 pièces de monnaie, il gagne 2€ pour chaque pile obtenu et perd un euro pour chaque face. On note X la variable aléatoire égale au gain algébrique du joueur.

5.2. Définition

Soit Ω un univers fini muni d'une probabilité. On nomme <u>variable aléatoire</u> réelle toute application de Ω dans \mathbb{R} .

Notation:

$$\Omega = \{\omega_1; \omega_2; \dots; \omega_n\}$$

$$X(\omega_i) = x_k$$

On classe les x_k dans l'ordre croissant : $x_1 < x_2 < ... < x_k < ... < x_p$

(attention x_1 n'est pas nécessairement l'image de ω_1 par X)

 $\mathcal{X} = \{x_1; x_2; \dots; x_p\}$ est l'univers image.

$$(X=\{x_k\})=\{\omega_i, X(\omega_i)=x_k\}$$

 $(X=\{x_k\})$ est un événement.

Si $x \notin \mathcal{X}$ alors $(X=x)=\emptyset$

Pour l'exemple :

$$X(PPP) = 3 \times 2 - 1 = 5$$

$$X(PPF) = 2 \times 2 - 1 \times 1 - 1 = 2$$

$$X(PFP) = 2 \times 2 - 1 \times 1 - 1 = 2$$

$$X(FPP) = 2 \times 2 - 1 \times 1 - 1 = 2$$

$$X(PFF) = 2 \times 1 - 1 \times 2 - 1 = -1$$

$$X(FPF) = 2 \times 1 - 1 \times 2 - 1 = -1$$

$$X(FFP) = 2 \times 1 - 1 \times 2 - 1 = -1$$

$$X(FFF) = 0 \times 2 - 3 \times 1 - 1 = -4$$

$$\mathcal{X} = \{-4; -1; 2; 5\}$$

$$(X=-1)=\{PFF;FPF;FFP\}$$

$$(X=0)=\emptyset$$

5.3. Loi de probabilité

Soit l'univers Ω muni de la probabilité P et X une variable aléatoire réelle sur Ω .

On nomme <u>loi de probabilité</u> de X, l'application φ de \mathbb{R} dans [0;1] définie par $\varphi(x) = P(X = x)$.

Si $x \notin \{x_1; x_2; \dots; x_p\}$ alors $\varphi(x) = 0$

Pour $x \in \{x_1; x_2; \dots; x_p\}$, on dispose les résultats sous forme de tableau.

Pour l'exemple :

$$P(X=-4)=\frac{1}{8}$$
 $P(X=-1)=\frac{3}{8}$ $P(X=2)=\frac{3}{8}$ $P(X=5)=\frac{1}{8}$

$$P(X=2)=\frac{3}{8}$$

$$P(X=5) = \frac{1}{8}$$

	x _i	-4	-1	2	5
P((X=x _i)	$\frac{1}{8}$	$\frac{3}{8}$	$\frac{3}{8}$	$\frac{1}{8}$

5.4. Notation

 $x \in \mathbb{R}$

$$(X \le x) = \{\omega_i, X(\omega_i) \le x\}$$

 $(X \le x)$ est un événement.

Si
$$x < x_1$$
 alors $(X \le x) = \emptyset$

Si
$$x_p \le x$$
 alors $(X \le x) = \Omega$

Pour l'exemple :

$$(X \le -6) = \emptyset$$

$$(X \le \sqrt{3}) = (X = -4) \cup (X = -1) = \{FFF; PFF; FPF; FFP\}$$

$$(X \le 6) = \Omega$$

5.5. Espérance mathématique

Soit X une variable aléatoire réelle définie sur un univers fini Ω muni de la probabilité P et prenant les valeurs $x_1; x_2; ... x_p$

On nomme <u>espérance mathématique</u> de X le réel noté E(X) défini par :

$$E(X) = x_1 \times P(X = x_1) + x_2 \times P(X = x_2) + ... + P(X = x_p)$$

Pour l'exemple :

$$E(X) = -4 \times \frac{1}{8} - 1 \times \frac{3}{8} + 2 \times \frac{3}{8} + 5 \times \frac{1}{8} = \frac{4}{8} = 0,5$$

5.6. Variance

On nomme variance de X le réel noté Var(X) défini par :

$$Var(X) = (x_1 - E(X))^2 \times P(X = x_1) + (x_2 - E(X))^2 \times P(X = x_2) + \dots + (x_p - E(X))^2 \times P(X = x_p)$$

$$Var(X) = x_1^2 \times P(X = x_1) + x_2^2 \times P(X = x_2) + \dots + x_p^2 \times P(X = x_p) - (E(X))^2$$

Pour l'exemple :

$$Var(X) = (-4 - 0.5)^{2} \times \frac{1}{8} + (-1 - 0.5)^{2} \times \frac{3}{8} + (2 - 0.5)^{2} \times \frac{3}{8} + (5 - 0.5)^{2} \times \frac{1}{8}$$
$$Var(X) = 6.75 = \frac{27}{4}$$

On peut vérifier :

$$(-4)^2 \times \frac{1}{8} + (-1)^2 \times \frac{3}{8} + 2^2 \times \frac{3}{8} + 5^2 \times \frac{1}{8} - 0,5^2 = 6,75 = \frac{27}{4}$$

5.7. Ecart-type

On nomme écart-type d'une variable aléatoire réelle X le réel noté $\sigma(X)$ défini par :

$$\sigma(X) = \sqrt{Var(X)}$$

Pour l'exemple :

$$\sigma(X) = \sqrt{\frac{27}{4}} = \frac{3\sqrt{3}}{2} \approx 2.6$$