

Équations du type ax+by=c

Exercice Septembre 2003. Guyane-Antilles

Soit l'équation (1) d'inconnue rationnelle x: $78 x^3 + ux^2 + vx - 14 = 0$ où u et v sont des entiers relatifs.

- 1. On suppose dans cette question que $\frac{14}{39}$ est solution de l'équation (1).
- a. Prouver que les entiers relatifs u et v sont liés par la relation: 14u + 39v = 1129.
- b. Utiliser l'algorithme d'Euclide, en détaillant les diverses étapes du calcul, pour trouver un couple (x; y) d'entiers relatifs vérifiant l'équation 14x + 39y = 1.

Vérifier que le couple (-25;9) est solution de cette équation.

c. En déduire un couple (u_0, v_0) solution particulière de l'équation 14u + 39v = 1129.

Donner la solution générale de cette équation c'est-à-dire l'ensemble des couples (u; v) d'entiers relatifs qui la vérifient.

- d. Déterminer, parmi les couples (u; v) précédents, celui pour lequel le nombre u est l'entier naturel le plus petit possible.
- 2. a. Décomposer 78 et 14 en facteurs premiers.

En déduire, dans IN, l'ensemble des diviseurs de 78 et l'ensemble des diviseurs de 14.

b. Soit $\frac{P}{Q}$ une solution rationnelle de l'équation (1) d'inconnue $x: 78 x^3 + ux^2 + vx - 14 = 0$ où u et v sont des entiers relatifs.

Montrer que si P et Q sont des entiers relatifs premiers entre eux, alors P divise 14 et Q divise 78.

c. En déduire le nombre de rationnels, non entiers, pouvant être solutions de l'équation (1) et écrire, parmi ces rationnels, l'ensemble de ceux qui sont positifs.

Correction:

1. a.

 $\frac{14}{39}$ est solution de l'équation (1), donc:

$$78 \times \frac{14^3}{39^3} + u \times \frac{14^2}{39^2} + v \times \frac{14}{39} - 14 = 0$$

$$2 \times \frac{14^3}{39^2} + u \times \frac{14^2}{39^2} + v \times \frac{14}{39} - 14 = 0$$

$$2 \times 14^3 + u \times 14^2 + v \times 14 \times 39 - 14 \times 39^2 = 0$$

$$2 \times 14^2 + u \times 14 + v \times 39 - 39^2 = 0$$

$$14u + 39v = 1129$$

b.

а	b	Quotient	reste
39	14	2	11
14	11	1	3
11	3	3	2
3	2	1	1
2	1	2	0

$$a=b\times 2+11$$
 done: $11=a-2b$

$$b = 11 \times 1 + 3$$

$$b = (a-2b) \times 1 + 3$$

$$b=a-2b+3$$
 done: $3=-a+3b$

$$11 = 3 \times 3 + 2$$

$$a-2b=(-a+3b)\times 3+2$$

$$a-2b=-3a+9b+2$$
 donc: $2=4a-11b$

$$3 = 2 \times 1 + 1$$

$$-a + 3b = (4a - 11b) \times 1 + 1$$

$$-a+3b=4a-11b+1$$
 donc: $1=-5a+14b$

On a:
$$39 \times (-5) + 14 \times 14 = 1$$

$$14 \times 14 + 39 \times (-5) = 1$$

Donc:

Le couple (14;-5) est <u>une solution particulière</u> de l'équation 14x + 39y = 1.

$$14 \times (-25) + 39 \times 9 = 1$$

Donc:

Le couple (-25;9) est <u>une solution particulière</u> de l'équation 14x + 39y = 1.

c

Le couple (14;-5) est une solution particulière de l'équation 14x + 39y = 1.

$$14 \times 1129 = 15806$$

$$-5 \times 1129 = -5645$$

Donc:

Le couple (15806;-5645) est une solution particulière de l'équation 14x + 39y = 1129.

Le couple (-25;9) est une autre solution particulière de l'équation 14x + 39y = 1.

$$-25 \times 1129 = -28225$$

$$9 \times 1129 = 10161$$

Donc:

Le couple (-28225;10161) est une autre solution particulière de l'équation 14x + 39y = 1129.

$$14u + 39v = 1129$$

$$\Leftrightarrow$$
 14 u+ 39 v=14 u₀+ 39 v₀

$$\Leftrightarrow 14(u-u_0)=39\times(-v+v_0)$$

14 divise
$$39(-v + v_0)$$

$$\mathcal{P}$$
gcd(14;39)=1

D'après le théorème de Gauss, 14 divise $(-v + v_0)$

Donc il existe $k \in \mathbb{Z}$ tel que $(-v + v_0) = 14 k$

Pour tout $k \in \mathbb{Z}$ si $-v + v_0 = 14k$, alors:

$$14(u-u_0)=39\times(-v+v_0) \Leftrightarrow 14(u-u_0)=39\times14 \ k \Leftrightarrow u-u_0=39 \ k$$

Conclusion:

Pour tout $k \in \mathbb{Z}$, $u - u_0 = 39 k$ et $-v + v_0 = 14 k$

$$\begin{bmatrix} u = 39 k + u_0 \\ v = -14 k + v_0 \end{bmatrix} k \in \mathbb{Z}$$

d

Si
$$u_0 = 15806$$
 et $v_0 = -5645$

$$15806 = 39 \times 405 + 11$$

$$u = 39 k + 39 \times 405 + 11$$

$$u=39(k+405)+11$$

Pour k = -405, on obtient u = 11

On a alors:

$$v = -14 \times (-405) - 5645$$

$$v = 5670 - 5645$$

v = 25

On obtient le couple (11:45)

Si
$$u_0 = -28225$$
 et $v_0 = 10161$

$$-28225=39\times(-724)+11$$

 $u=39 k+39\times(-724)+11$
 $u=39 (k-724)+11$

Pour k = 724, on obtient u = 11

On a alors:

$$v = -14 \times (724) + 10161$$

 $v = -10136 + 10161$

v = 25

On obtient aussi le couple (11;45)

2. a.

$$78 = 2 \times 3 \times 13$$

Il y a $2\times2\times2=8$ diviseurs de 78 dans \mathbb{N}

$$D_{78} = \{1;2;3;6;13;26;39;78\}$$

$$14=2\times7$$

Il y a $2 \times 2 = 4$ diviseurs de 14 dans \mathbb{N}

$$D_{14} = \{1; 2; 7; 14\}$$

b.

 $\frac{P}{Q}$ est solution de l'équation (1), donc:

$$78 \times \frac{P^{3}}{Q^{3}} + u \times \frac{P^{2}}{Q^{2}} + v \times \frac{P}{Q} - 14 = 0$$

$$78 \times P^{3} + uQ \times P^{2} + vQ^{2} \times P - 14 \times Q^{3} = 0$$

$$78 P^{3} = Q(-uP^{2} - vPQ + 14Q^{2})$$
(2)

$$(-uP^2-vPQ+14Q^2)\in\mathbb{Z}$$

 $\mathscr{P}\gcd(P;Q)=1 \text{ donc } \mathscr{P}\gcd(P^3;Q)=1$

Q divise $78 P^3$

$$\mathcal{P}\gcd(P^3;Q)=1$$

D'après <u>le théorème de Gauss</u>: *Q* divise 78

Équations du type ax+by=c

De même, d'après l'expression (2), on a:

$$78 \times P^{3} + uQ \times P^{2} + vQ^{2} \times P - 14 \times Q^{3} = 0$$

$$14 O^{3} = P(78 P^{2} + uOP + vO^{2})$$

P divise $14Q^3$

 $\mathcal{P}\gcd(P;Q^3)=1$

D'après <u>le théorème de Gauss</u>: P divise 14

c.

On rappelle que:

 $D_{14} = \{1;2;7;14\} \text{ et } D_{78} = \{1;2;3;6;13;26;39;78\}$

- Si <u>P=1</u>alors tout diviseur de 78 est premier avec *P*. Pour *Q*, il y a 7 possibilités. (on exclue *Q*=1 pour lequel on obtient l'entier 1). On a donc: $\frac{1}{2}$; $\frac{1}{3}$; $\frac{1}{6}$; $\frac{1}{13}$; $\frac{1}{26}$; $\frac{1}{39}$; $\frac{1}{78}$
- Si P=2 alors pour Q il faut choisir un diviseur de 78 impair et différent de 1. Il y a 3 possibilités. On a donc: 2/3; 2/13; 2/39
- Si P=7 alors tout diviseur de 78 est premier avec P. Pour Q, il y a 7 possibilités. (on exclue Q=1 pour lequel on obtient l'entier 1). On a donc: $\frac{7}{2}$; $\frac{7}{3}$; $\frac{7}{6}$; $\frac{7}{13}$; $\frac{7}{26}$; $\frac{7}{78}$
- Si <u>P=14</u> alors pour Q il faut choisir un diviseur de 78 impair et différent de 1. Il y a 3 possibilités. On a donc: $\frac{14}{3}$; $\frac{14}{13}$; $\frac{14}{39}$

On a donc <u>20 rationnels positifs</u>, <u>non entiers</u>, pouvant être <u>solutions de l'équation (1)</u>. (Il y a aussi 20 rationnels négatifs)