

Congruence. Critères de divisibilité.

Exercice

Démontrer que l'ensemble des nombres premiers est infini.

Congruence. Critères de divisibilité.

Correction:

On suppose que l'ensemble des nombres premiers est fini.

On note g le plus grand de tous les nombres premiers.

On classe les nombres premiers dans l'ordre croissant:

$$p_1 < p_2 < ... < p_k < ... < g$$

$$p_1=2$$
; $p_2=3$; ...

On considère le nombre $N=1\times 2\times 3\times ...\times g+1$, que l'on note N=(g!)+1

N est un entier naturel strictement supérieur à 1 donc N admet au moins un diviseur qui est un nombre premier.

Or pour tout nombre premier p_k , on a: $(g!)\equiv 0(p_k)$

Par suite,
$$N \equiv 1(p_k)$$

N n'est donc divisible par aucun nombre premier, il y a contradiction avec le résultat.

Donc l'hypothèse faite est fausse et <u>l'ensemble des nombres premiers est infini</u>.