

Candidats ayant suivi l'enseignement de spécialité **Exercice 4** 5 points

On définit les suites (u_n) et (v_n) sur l »ensemble des entiers naturels \mathbb{N} par :

$$u_0 = 0$$
; $v_0 = 1$ et
$$\begin{cases} u_{n+1} = \frac{u_n + v_n}{2} \\ v_{n+1} = \frac{u_n + 2v_n}{3} \end{cases}$$

Le but de l'exercice est d'étudier la convergence des suites (u_n) et (v_n) .

- 1. Calculer u_1 et v_1 .
- 2. On considère l'algorithme suivant :

Variables: u, v et w nombres réels

N et k des nombres entiers

Initialisation: u prend la valeur 0

v prend la valeur 1

Début de l'algorithme

Entrer la valeur de N

Pour k variant de 1 à N

w prend la valeur u

u prend la valeur $\frac{w+v}{2}$

v prend la valeur $\frac{w+2v}{3}$

Fin Pour

Afficher u

Afficher v

Fin de l'algorithme

a. On exécute cet algorithme en saisissant N = 2. Recopier et compléter le tableau donné ci-dessous contenant l'état des variables au cours de l'exécution de l'algorithme.

k	$oldsymbol{w}$	u	$oldsymbol{v}$
1			
2			

- b. Pour un nombre N donné, à quoi correspondent les valeurs affichées par l'algorithme par rapport à la situation étudiée dans cet exercice ?
- 3. Pour tout entier naturel n on définit le vecteur colonne X_n par $X_n = \begin{pmatrix} x_n \\ y \end{pmatrix}$

et la matrice A par
$$A = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{3} & \frac{2}{3} \end{pmatrix}$$
.

- **a.** Vérifier que, pour tout entier naturel n, $X_{n+1} = AX_n$
- **b.** Démontrer par récurrence que $X_n = A^n X_0$ pour tout entier naturel n.

- **4.** On définit les matrices P, P' et B par $P = \begin{pmatrix} \frac{4}{5} & \frac{6}{5} \\ -\frac{6}{5} & \frac{6}{5} \end{pmatrix}$, $P' = \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{1}{3} \end{pmatrix}$ et $B = \begin{pmatrix} 1 & 0 \\ 0 & \frac{1}{6} \end{pmatrix}$.
 - a. Calculer le produit PP' On admet que P'BP = ADémontrer par récurrence que pour tout entier naturel n, $A^n = P'B^nP$.
 - **b.** On admet que pour tout entier naturel n, $B^n = \begin{pmatrix} 1 & 0 \\ 0 & \left(\frac{1}{6}\right)^n \end{pmatrix}$. En déduire l'expression de la matrice A^n en fonction de n.
- **5. a.** Montrer que $X_n = \begin{pmatrix} \frac{3}{5} \frac{3}{5} \left(\frac{1}{6}\right)^n \\ \frac{3}{5} + \frac{2}{5} \left(\frac{1}{6}\right)^n \end{pmatrix}$ pour tout entier naturel n; En déduire les expressions de u_n et v_n en fonction de n.
 - **b.** Déterminer alors les limites des suites (u_n) et (v_n) .

CORRECTION

1.
$$u_0 = 0$$
 et $v_0 = 1$
 $u_1 = \frac{u_0 + v_0}{2} = \frac{0 + 1}{2} = \frac{1}{2}$
 $v_1 = \frac{u_0 + 2v_0}{3} = \frac{0 + 2}{3} = \frac{2}{3}$

2. a. On donne des valeurs approchées à 10^{-3} près.

k	w	u	$oldsymbol{v}$
1	0	0.5	0.667
2	0.5	0.583	0.611

b. On affiche une valeur approchée à 10^{-3} près de u_n et v_n .

3. a.
$$X_n = \begin{pmatrix} u_n \\ v_n \end{pmatrix}$$
, $u_{n+1} = \frac{u_n + v_n}{2}$ et $v_{n+1} = \frac{u_n + 2v_n}{3}$.

$$AX_n = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{3} & \frac{2}{3} \end{pmatrix} \begin{pmatrix} u_n \\ v_n \end{pmatrix} = \begin{pmatrix} \frac{1}{2}u_n + \frac{1}{2}v_n \\ \frac{1}{3}u_n + \frac{2}{3}v_n \end{pmatrix} = \begin{pmatrix} \frac{u_n + v_n}{2} \\ \frac{u_n + 2v_n}{3} \end{pmatrix} = \begin{pmatrix} u_{n+1} \\ v_{n+1} \end{pmatrix} = X_{n+1}$$

b. On veut démontrer en utilisant un raisonnement par récurrence que pour tout entier naturel n : $X_n = A^n X_0$.

Initialisation

Pour n = 0 on convient que
$$A^0 = I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 et $A^0 I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} = X_0$.

La propriété est vérifiée pour n = 0.

Hérédité

Pour démontrer que la propriété est héréditaire pour tout entier naturel n, on suppose que $X_n = A^n X_0$ et on doit démontrer que $X_{n+1} = A^{n+1} X_0$.

$$X_{n+1} = AX^n = A(A^nX_0) = (AA^n)X_0 = A^{n+1}X_0$$

Conclusion

Le principe de récurrence nous permet d'affirmer que por tout entier naturel n : $X_n = A^n X_0$.

4. a. PP' =
$$\begin{pmatrix} \frac{4}{5} & \frac{6}{5} \\ -\frac{6}{5} & \frac{6}{5} \end{pmatrix} \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{1}{3} \end{pmatrix} = \begin{pmatrix} \frac{4}{10} + \frac{6}{10} & -\frac{4}{10} + \frac{6}{15} \\ -\frac{6}{10} + \frac{6}{10} & \frac{6}{10} + \frac{6}{15} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I.$$

On admet que : P'BP = A

On veut démontrer en utilisant un raisonnement par récurrence que pour tout entier naturel n : $A^n = P'B^nP$.

Initialisation

Pour
$$n = 0$$
 $A^0 = I$ et $B^0 = I$ et $P'B^0P = P'IP = P'P = I = A^0$

La propriété est vérifiée pour n = 0.

Hérédité

Pour démontrer que la propriété est héréditaire pour tout entier naturel n, on suppose que $A^n = P'B^nP$ et on doit démontrer que $A^{n+1} = P'B^{n+1}P$.

Or
$$A^{n+1} = A^n A = (P'B^n P)(P'BP) = P'B^n (PP')BP = P'B^n IBP$$

 $A^{n+1} = P'B^n BP = P'B^{n+1}P$

Conclusion

Le principe de récurrence nous permet d'affirmer que pour tout entier naturel $n : A^n = P'B^nP$

b. On admet que:
$$\mathbf{B}^{n} = \begin{pmatrix} 1 & 0 \\ 0 & \left(\frac{1}{6}\right)^{n} \end{pmatrix}$$

$$\mathbf{A}^{n} = \mathbf{P}' \mathbf{B}^{n} \mathbf{P} = \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{1}{3} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & \left(\frac{1}{6}\right)^{n} \end{pmatrix} \begin{pmatrix} \frac{4}{5} & \frac{6}{5} \\ -\frac{6}{5} & \frac{6}{5} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} \left(\frac{1}{6}\right)^{n} \\ \frac{1}{2} & \frac{1}{3} \left(\frac{1}{6}\right)^{n} \end{pmatrix} \begin{pmatrix} \frac{4}{5} & \frac{6}{5} \\ -\frac{6}{5} & \frac{6}{5} \end{pmatrix}$$

$$\mathbf{A}^{n} = \begin{pmatrix} \frac{4}{10} + \frac{6}{10} \left(\frac{1}{6}\right)^{n} & \frac{6}{10} - \frac{6}{10} \left(\frac{1}{6}\right)^{n} \\ \frac{4}{10} - \frac{6}{15} \left(\frac{1}{6}\right)^{n} & \frac{6}{10} + \frac{6}{15} \left(\frac{1}{6}\right)^{n} \end{pmatrix} = \begin{pmatrix} \frac{2}{5} + \frac{3}{5} \left(\frac{1}{6}\right)^{n} & \frac{3}{5} - \frac{2}{5} \left(\frac{1}{6}\right)^{n} \\ \frac{2}{5} - \frac{2}{5} \left(\frac{1}{6}\right)^{n} & \frac{3}{5} + \frac{2}{5} \left(\frac{1}{6}\right)^{n} \end{pmatrix}$$

5. a.
$$X_n = A^n X_0$$

$$X_n = \begin{pmatrix} \frac{2}{5} + \frac{3}{5} \left(\frac{1}{6}\right)^n & \frac{3}{5} - \frac{2}{5} \left(\frac{1}{6}\right)^n \\ \frac{2}{5} - \frac{2}{5} \left(\frac{1}{6}\right)^n & \frac{3}{5} + \frac{2}{5} \left(\frac{1}{6}\right)^n \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{3}{5} - \frac{2}{5} \left(\frac{1}{6}\right)^n \\ \frac{3}{5} - \frac{2}{5} \left(\frac{1}{6}\right)^n \end{pmatrix} = \begin{pmatrix} u_n \\ v_n \end{pmatrix}.$$

$$u_n = \frac{3}{5} - \frac{2}{5} \left(\frac{1}{6}\right)^n \quad \text{et} \quad v_n = \frac{3}{5} + \frac{2}{5} \left(\frac{1}{6}\right)^n$$

b.
$$-1 < \frac{1}{6} < 1$$
 donc $\lim_{n \to +\infty} \left(\frac{1}{6} \right)^n = 0$

Conclusion

$$\lim_{n\to+\infty} u_n = \lim_{n\to+\infty} v_n = \frac{3}{5}.$$