

Candidats n'ayant pas suivi l'enseignement de spécialité **Exercice 4** 5 points

Soit la suite numérique (u_n) définie sur \mathbb{N} par :

$$u_0 = 2$$
 et pour tout entier naturel n, $u_{n+1} = \frac{2}{3}u_n + \frac{1}{3}n + 1$

- **1 .a.** Calculer u_1, u_2, u_3, u_4 . On pourra en donner des valeurs approchées à 10^{-2} près.
 - **b.** Formuler une conjecture sur le sens de variation de cette suite.
- **2 .a.** Démontrer que pour tout entier naturel n, $u_n \le n+3$
 - **b.** Démontrer que pour tout entier naturel n, $u_{n+1} u_n = \frac{1}{3}(n+3-u_n)$.
 - c. En déduire une validation de la conjecture précédente.
- **3.** On désigne par (v_n) la suite définie sur \mathbb{N} par $v_n = u_n n$
 - a. Démontrer que la suite (v_n) est une suite géométrique de raison $\frac{2}{3}$.
 - **b.** En déduire que pour tout entier naturel n, $u_n = 2\left(\frac{2}{3}\right)^n + n$.
 - **c.** Déterminer la limite de la suite (u_n) .
- 4. Pour tout entier naturel non nul n, on pose :

$$S_n = \sum_{k=0}^n u_k = u_0 + u_1 + ... + u_n$$
 et $T_n = \frac{S_n}{n^2}$

- **a.** Exprimer S_n en fonction de n.
- **b.** Déterminer la suite de la suite (T_n) .

CORRECTION

 $u_0 = 2$ et pour tout entier naturel n : $u_{n+1} = \frac{2}{3}u_n + \frac{1}{3}n + 1$.

1.a.
$$u_1 = \frac{2}{3}u_0 + \frac{1}{3} \times 0 + 1 = \frac{4}{3} + 1 = \frac{7}{3}$$
 $u_1 = \frac{7}{3} \approx 2,33$

$$u_2 = \frac{2}{3} \times \frac{7}{3} + \frac{1}{3} \times 1 + 1 = \frac{14}{9} + \frac{3}{9} + \frac{9}{9} = \frac{26}{9}$$
 $u_2 = \frac{26}{9} \approx 2,89$

$$u_3 = \frac{2}{3} \times \frac{26}{9} + \frac{1}{3} \times 2 + 1 = \frac{52}{27} + \frac{18}{27} + \frac{27}{27} = \frac{97}{27}$$
 $u_3 = \frac{97}{27} \approx 3,59$

$$u_4 = \frac{2}{3} \times \frac{97}{27} + \frac{1}{3} \times 3 + 1 = \frac{194}{81} + \frac{81}{81} + \frac{81}{81} = \frac{356}{81}$$
 $u_4 = \frac{356}{81} \approx 4,40$

- **b.** Conjecture: « la suite (u_n) est croissante »
- 2.a. On veut démontrer en utilisant un raisonnement par récurrence que pour tout entier naturel n : $u_n \le n+3$.
 - . Initialisation: $u_0 = 2$ et 0+3 = 3 donc $u_0 \le 0+3$ La propriété est vérifiée pour n = 0
 - . Hérédité :

Pour démontrer que la propriété est héréditaire pour tout entier naturel n, on suppose que : $u_n \le n+3$ et on doit démontrer que : $u_{n+1} \le (n+1)+3=n+4$ (c'est à dire $n+4-u_{n+1} \ge 0$ sachant que $n+3-u_n \ge 0$)

$$n+4-u_{n+1}=n+4-\frac{2}{3}u_n-\frac{1}{3}n-1=\frac{2}{3}n+3-\frac{2}{3}u_n=\frac{2}{3}(n+3-u_n)+1$$
or $n+3-u_n \ge 0$ donc $n+4-u_{n+1} \ge 0$

. Conclusion:

Le principe de récurrence permet d'affirmer que pour tout entier naturel n, on a: $u_n \le n+3$.

b. Pour tout entier naturel n :

$$u_{n+1} - u_n = \frac{2}{3}u_n + \frac{1}{3}n + 1 - u_n = \frac{1}{3}n + 1 - \frac{1}{3}u_n = \frac{1}{3}(n + 3 - u_n)$$

- **c.** $n+3-u_n \ge 0$ done pour tout entier naturel n : $u_{n+1}-u_n \ge 0$ La suite (u_n) est donc croissante.
- **3.** Pour tout entier naturel n, on a : $v_n = u_n n$

a.
$$v_{n+1} = u_{n+1} - (n+1) = \frac{2}{3}u_n + \frac{1}{3}n + 1 - n - 1 = \frac{2}{3}u_n - \frac{2}{3}n = \frac{2}{3}(u_n - n) = \frac{2}{3}v_n$$

 $v_0 = u_0 - 0 = u_0 = 2$

 (v_n) est la suite géométrique de premier terme $v_0 = 2$ et de raison $\frac{2}{3}$.

b. Pour tout entier naturel n, $v_n = v_0 \times \left(\frac{2}{3}\right)^n = 2 \times \left(\frac{2}{3}\right)^n$ et $u_n = v_n + n$

donc $u_n = 2 \times \left(\frac{2}{3}\right)^n + n$

c.
$$0 < \frac{1}{2} < 1$$
 donc $\lim_{n \to +\infty} \left(\frac{2}{3}\right)^n = 0$ et $\lim_{n \to +\infty} u_n = +\infty$

4.a. Pour tout entier naturel non nul n

$$S_{n} = \sum_{k=0}^{n} u_{k} = u_{0} + u_{1} + \dots + u_{n} = v_{0} + 0 + v_{1} + 1 + \dots + v_{n} + n = v_{0} + v_{1} + \dots + v_{n} + 0 + 1 + \dots + n$$

$$S_{n} = \sum_{k=0}^{n} v_{k} + \sum_{k=0}^{n} k$$

$$\sum_{k=0}^{n} k = \frac{n(n+1)}{2} \text{ et } \sum_{k=0}^{n} v_{k} = \frac{v_{n+1} - v_{0}}{\frac{2}{3} - 1}$$

$$v_{n+1} - v_{0} = 2 \times \left(\frac{2}{3}\right)^{n+1} - 2 \qquad \frac{2}{3} - 1 = -\frac{1}{3}$$

$$\sum_{k=0}^{n} v_{k} = -3\left(2 \times \left(\frac{2}{3}\right)^{n+1} - 2\right) = 6 - 6 \times \left(\frac{2}{3}\right)^{n+1}$$

$$S_{n} = \sum_{k=0}^{n} u_{n} = 6 - 6 \times \left(\frac{2}{3}\right)^{n+1} + \frac{n(n+1)}{2}$$

b.
$$T_n = \frac{S_n}{n^2} = \frac{6}{n^2} - \frac{6}{n^2} \times \left(\frac{2}{3}\right)^{n+1} + \frac{n(n+1)}{2n^2}$$

$$\lim_{n \to +\infty} \frac{6}{n^2} = 0 \qquad \lim_{n \to +\infty} \frac{6}{n^2} \times \left(\frac{2}{3}\right)^{n+1} = 0$$

$$\lim_{n \to +\infty} \frac{n(n+1)}{2n^2} = \frac{1}{2}$$

$$\lim_{n\to+\infty} T_n = \frac{1}{2}.$$