

Centres-étrangers-Juin-2014.

Exercice 2 4 points

On définit, pour tout entier naturel n, les nombres complexes z par :

$$\begin{cases} z_0 = 16 \\ z_{n+1} = \frac{1+i}{2} z_n \end{cases}$$
 (pour tout entier naturel *n*).

On note r_n le module du nombre complexe z_n : $r_n = |z_n|$.

Dans le plan muni d'un repère orthonormé direct d'origine O, on considère les points A_n d'affixes.

- **1.a.** Calculer z_1 , z_2 et z_3 .
- b. Placer les points A₁ et A₂ sur le graphique de l'annexe, à rendre avec la copie.
- c. Écrire le nombre complexe $\frac{1+i}{2}$ sous forme trigonométrique.
- **d.** Démontrer que le triangle OA_0A_1 est isocèle rectangle en A_1 .
- **2.** Démontrer que la suite (r_n) est géométrique, de raison $\frac{\sqrt{2}}{2}$.

La suite (r_n) est-elle convergente?

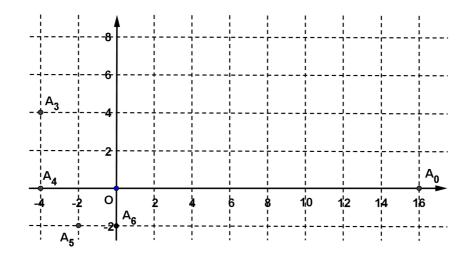
Interpréter géométriquement le résultat précédent.

On note L_n la longueur de la ligne brisée qui relie le point A_0 au point A_n en passant successivement par les points A_1 , A_2 , A_3 etc.

Ainsi,
$$L_n = \sum_{i=0}^{n-1} A_i A_{i+1} = A_0 A_1 + A_1 A_2 + ... + A_{n-1} A_n$$

- **3. a.** Démontrer que pour tout entier naturel $n: A_n A_{n+1} = r_{n+1}$.
- **b.** Donner une expression de L_n en fonction de n.
- **c.** Déterminer la limite éventuelle de la suite (L_n).

ANNEXE (exercice 2)



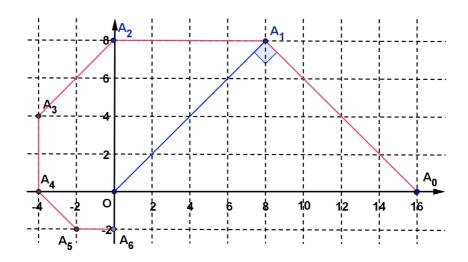
Correction:

1.a.
$$z_1 = \frac{1+i}{2} z_0 = \frac{1+i}{2} \times 16 = 8(1+i) = 8+8i$$

$$z_2 = \frac{1+i}{2} \times 8(1+i) = 4(1+i)^2 = 4(1+2i+i^2) = 8i$$

$$z_3 = \frac{1+i}{2} \times 8i = 4i(1+i) = 4i - 4 = -4 + 4i$$

b.



c.
$$\left| \frac{1+i}{2} \right| = \frac{|1+i|}{2} = \frac{\sqrt{1+1}}{2} = \frac{\sqrt{2}}{2}$$

$$\frac{1+i}{2} = \frac{\sqrt{2}}{2} \left(\frac{1}{\sqrt{2}} + i \frac{1}{\sqrt{2}} \right) = \frac{\sqrt{2}}{2} \left(\frac{\sqrt{2}}{2} + i \frac{\sqrt{2}}{2} \right)$$

$$\cos \theta = \frac{\sqrt{2}}{2} \text{ et } \sin \theta = \frac{\sqrt{2}}{2}$$

$$\operatorname{donc}, \ \theta = \frac{\pi}{4} (2\pi)$$

$$\frac{1+i}{2} = \frac{\sqrt{2}}{2} \left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2} e^{i\frac{\pi}{4}}$$

d.
$$\overrightarrow{OA}_0$$
 (16) $OA_0 = r_0 = 16$
 \overrightarrow{OA}_1 (8+8i) $OA_1 = r_1 = \sqrt{8^2 + 8^2} = 8\sqrt{2}$
 $\overrightarrow{A}_0 \overrightarrow{A}_1$ (-8+8i) $A_0 A_1 = \sqrt{8^2 + 8^2} = 8\sqrt{2}$

 $OA_1 = A_0 A_1$ donc, le triangle $OA_0 A_1$ est <u>isocèle</u> en A_1 .

 $OA_1^2 + A_0A_1^2 = 64 \times 2 + 64 \times 2 = 256 = 16^2 = OA_0^2$. La réciproque du théorème de Pythagore nous permet d'affirmer que le triangle OA_0A_1 est <u>rectangle</u> en A_1 .

Conclusion:

Le triangle OA_0A_1 est <u>rectangle isocèle</u> en A_1 .

2. Pour tout entier naturel *n*:

$$z_{n+1} = \frac{1+\mathrm{i}}{2} z_n$$

Donc,
$$|z_{n+1}| = \left| \frac{1+i}{2} \right| \times |z_n|$$

Soit,
$$r_{n+1} = \frac{\sqrt{2}}{2} r_n$$

La suite (r_n) est <u>la suite géométrique</u> de premier terme $r_0 = \underline{16}$ et de raison $q = \frac{\sqrt{2}}{2}$

$$0 < \frac{\sqrt{2}}{2} < 1$$
 donc la suite (r_n) converge vers 0 .

 $r_n = OA_n$ lorsque n est « très grand », r_n est « voisin de zéro » et A_n est « voisin de l'origine O ».

3. a. Pour tout entier naturel n:

$$\overline{A_n A_{n+1}} (z_{n+1} - z_n)
z_{n+1} - z_n = \left(\frac{1+i}{2}\right) z_n - z_n = \left(\frac{-1+i}{2}\right) z_n
A_n A_{n+1} = |z_{n+1} - z_n| = \left|\frac{-1+i}{2}\right| \times |z_n| = \frac{\sqrt{2}}{2} r_n = r_{n+1}$$

b.
$$L_n = A_0 A_1 + A_1 A_2 + ... + A_{n-1} A_n = r_1 + r_2 + ... + r_n$$

C'est la somme de *n* termes consécutifs d'une suite géométrique de raison : $\frac{\sqrt{2}}{2}$

$$L_n = r_1 \times \frac{1 - \left(\frac{\sqrt{2}}{2}\right)^n}{1 - \frac{\sqrt{2}}{2}} = \frac{\sqrt{2}}{2} \times 16 \times \frac{1 - \left(\frac{\sqrt{2}}{2}\right)^n}{1 - \frac{\sqrt{2}}{2}}$$

$$\lim_{n \to +\infty} \left(\frac{\sqrt{2}}{2} \right)^n = 0 \text{ donc } \lim_{n \to +\infty} L_n = \frac{\sqrt{2}}{2} \times 16 \times \frac{1}{1 - \frac{\sqrt{2}}{2}}$$

$$\frac{\sqrt{2}}{2} \times 16 \times \frac{1}{1 - \frac{\sqrt{2}}{2}} = 8\sqrt{2} \times \frac{2}{2 - \sqrt{2}} = 16\sqrt{2} \times \frac{2 + \sqrt{2}}{4 - 2} = 8\sqrt{2}(2 + \sqrt{2}) = 16\sqrt{2} + 16$$

$$\lim_{n \to +\infty} L_n = \boxed{16\sqrt{2} + 16}$$