

Exercice 4

Candidats ayant suivi l'enseignement de spécialité

5 points

Les nombres de la forme 2^n-1 où n est un entier naturel non nul sont appelés **nombres de Mersenne.**

1. On désigne par a, b et c trois entiers naturels non nuls tels que PGCD(b;c) = 1. Prouver, à l'aide du théorème de Gauss, que :

Si *b* divise *a* et *c* divise *a* alors le produit *bc* divise *a*.

2. On considère le nombre de Mersenne 2³³-1. Un élève utilise sa calculatrice et obtient les résultats ci-dessous

$(2^{33}-1):3$	
(-99	2863311530
$(2^{33}-1):4$	2147483648
$(2^{33}-1):12$	2147483648
	715827883.6
	710027000.0

Il affirme que 3 divise $(2^{33}-1)$ et 4 divise $(2^{33}-1)$ et 12 ne divise pas $(2^{33}-1)$.

- a. En quoi cette affirmation contredit-elle le résultat démontré à la question 1 ?
- **b.** Justifier que, en réalité, 4 ne divise pas $(2^{33}-1)$.
- **c.** En remarquant que $2 \equiv -1$ (3), montrer que, en réalité, 3 ne divise pas $(2^{33}-1)$.
- **d.** Calculer la somme $S=1+2^3+(2^3)^2+(2^3)^3+...+(2^3)^{10}$
- e. En déduire que 7 divise $(2^{33}-1)$
- **3.** On considère le nombre de Mersenne (2^7-1) . Est-il premier ? Justifier.
- 4. On donne l'algorithme suivant où MOD(N,k) représente le reste de la division euclidienne de N par k.
 - Variables: n est un entier naturel supérieur ou égal à 3

k est un entier naturel supérieur ou égal à 2

Initialisation : Demander à l'utilisateur la valeur de n

Affecter à k la valeur 2

Traitement: Tant que MOD $(2^n-1)\neq 0$ et $k \leq \sqrt{2^n-1}$

Affecter à k la valeur k+1

Fin de Tant que **Afficher k** Si $k > \sqrt{2^n - 1}$

Afficher « CAS 1 »

Sinon

Afficher « CAS 2 »

Fin de Si

- **a.** Qu'affiche cet algorithme si on saisit n=33? Et si on saisit n=7?
- **b.** Que représente le CAS 2 pour le nombre de Mersenne étudié ? Que représente alors le nombre k affiché pour le nombre de Mersenne étudié ?S
- c. Que représente le CAS 1 pour le nombre de Mersenne étudié ?

Correction:

1. a, b et c trois entiers naturels non nuls tels que PGCD(b;c) = 1.

Prouver, à l'aide du théorème de Gauss, que :

Si *b* divise *a* et *c* divise *a* alors le produit *bc* divise *a*.

Si b divise a alors il existe un entier naturel non nul k tel que a = kb.

Si c divise a = kb et c est premier avec b alors <u>le théorème de Gauss</u> nous permet d'affirmer que c divise k donc il existe un entier naturel non nul k ' tel que k = k ' c].

Conséquence

$$a=kb=(k'c)b=k'(bc)$$
 et bc divise a.

2.a.
$$PGCD(3;4)=1$$

Si on suppose que b=3 divise $a=2^{33}-1$ et que c=4 divise $a=2^{33}-1$ alors $bc=3\times 4=12$ divise $a=2^{33}-1$. Or, l'élève affirme que 12 ne divise pas $a=2^{33}-1$

Donc <u>cette affirmation contredit le résultat démontré à la question 1</u>.

b.
$$2^{33}-1\equiv -1$$
 (2) ou $2^{33}-1\equiv 1$ (2) donc $2^{33}-1$ n'est pas un nombre pair

Et, $2^{33}-1$ n'est pas divisible par 4.

c.
$$2 \equiv -1$$
 (3) et $2^{33} \equiv (-1)^{33}$ (3)soit $2^{33} \equiv -1$ (3)

$$2^{33}-1\equiv -1-1$$
 (3) et $2^{33}-1\equiv -2$ (3) soit $2^{33}-1\equiv 1$ (3)

donc le reste de la division euclidienne de 2³³-1 par 3 est égal à 1.

<u>Conséquence</u>

 $3 \text{ ne divise pas } 2^{33}-1$.

d.
$$S=1+2^{3}+(2^{3})^{2}+(2^{3})^{3}+...+(2^{3})^{10}$$

S est <u>la somme des 11 premiers termes</u> de la <u>suite géométrique</u> (u_n) de premier terme $u_0=1$ et de raison $q=2^3$.

Pour tout entier naturel $n: [u_n=1\times(2^3)^n]$

 $u_n = (2^3)^n$, en particulier tous les termes de la suite (u_n) sont des entiers naturels, et $q \neq 1$ donc :

$$S = \frac{u_{11} - u_0}{q - 1} = \frac{(2^3)^{11} - 1}{2^3 - 1} = \frac{2^{33} - 1}{8 - 1} = \frac{2^{33} - 1}{7}$$

e. S est une somme d'entiers naturels donc S est un entier naturel.

On obtient : $2^{33} - 1 = 7 \times S$

Conclusion

 $7 \frac{\text{divise}}{2^{33}-1}$

3.
$$2^7 - 1 = 128 - 1 = 127$$

127 n'est pas divisible par les nombres premiers : 2, 3, 5, 7, 11 et on a $13^2 > 127$.

On peut donc affirmer que 127 est un nombre premier.

4.a.
$$n=33$$

$$2^{33}$$
–1 n'est pas divisible par 2, 3 et 4

D'autre part

$$2^{33} = (2^{2})^{16} \times 2 = 4^{16} \times 2$$

$$4 \equiv -1$$
 (5) et $4^{16} \equiv (-1)^{16}$ (5) soit $4^{16} \equiv 1$ (5)

$$4^{16} \times 2 \equiv 2 (5) \text{ et } 2^{33} - 1 \equiv 1 (5)$$

donc, 2³³-1 n'est divisible par 5.

 $2^{33}-1$ n'est pas divisible par 6 car $2^{33}-1$ n'est pas divisible par 2.

Nous avons vu que 7 divise $2^{33}-1$.

Conclusion

L'algorithme affichera : 7

n = 7

 $2^7 - 1 = 127$ est <u>un nombre premier</u> donc n'est pas divisible par un nombre entier k compris entre 2 et $\sqrt{127}$.

Le plus grand entier naturel inférieur à $\sqrt{127}$ est 11.

L'algorithme affichera : 12

b. CAS 2 : Le nombre de Mersenne étudié est divisible par k donc n'est pas premier. L'entier naturel k affiché est le plus petit diviseur (supérieur ou égal à 2) du nombre de Mersenne étudié.

(remarque : le nombre k est nécessairement un nombre premier).

c. CAS 1 : Le nombre de Mersenne étudié est premier. L'entier naturel k affiché est le plus petit entier naturel dont le carré est strictement supérieur à 2^n-1 .