

Amérique du Nord-juin-2015.

Exercice 5 6 points

Partie A

Soit u la fonction définie sur $]0;+\infty[$ par : $u(x)=\ln(x)+x-3$

- 1. Justifier que la fonction u est strictement croissante sur l'intervalle $]0;+\infty[$.
- 2. Démontrer que l'équation u(x)=0 admet une solution unique α comprise entre 2 et 3.
- **3.** En déduire le signe de u(x) en fonction de x.

Partie B

Soit f la fonction définie sur l'intervalle $]0;+\infty[$ par $: f(x) = \left(1 - \frac{1}{x}\right)[\ln(x) - 2] + 2$ On appelle $\mathscr C$ la courbe représentative de la fonction f dans un repère orthogonal.

- 1. Déterminer la limite de la fonction f en 0.
- **2.a.** Démontrer que pour tout réel x de l'intervalle $]0;+\infty[$, $f'(x)=\frac{u(x)}{x^2}$ où u est la fonction définie dans la partie A.
- **b.** En déduire le sens de variation de la fonction f sur l'intervalle $]0;+\infty[$.

Partie C

Soit \mathscr{C}' la courbe d'équation $y = \ln(x)$

- 1. Démontrer que, pour tout réel x de l'intervalle $]0;+\infty[$, $f(x)-\ln(x)=\frac{2-\ln(x)}{x}$. En déduire que les courbes $\mathscr C$ et $\mathscr C$ ' ont un seul point commun dont on déterminera les coordonnées.
- **2.** On admet que la fonction H définie sur l'intervalle $]0;+\infty[$ par $: H(x)=\frac{1}{2}[\ln(x)]^2$ est une primitive de la fonction u définie sur $]0;+\infty[$ par $: h(x)=\frac{\ln(x)}{x}$.

Calculer
$$\int_{1}^{e^2} \frac{2-\ln x}{x} dx$$
.

Interpréter graphiquement ce résultat.

Correction:

Partie A

1. u est définie sur $]0;+\infty[$ par : $u(x)=\ln(x)+x-3$. u est dérivable sur $]0;+\infty[$.

$$u'(x) = \frac{1}{x} + 1 > 0$$

donc u est strictement croissante sur $]0;+\infty[$.

2. $u(2) = \ln(2) - 1 = \underline{-0.31}$ à 10^{-2} près

$$u(3)=\ln(3)=\frac{1,10}{2}$$
 à 10^{-2} près

u(2) < 0 et u(3) > 0 donc 0 appartient à l'intervalle [u(2); u(3)] et u est strictement croissante sur cet intervalle, <u>le théorème des valeurs intermédiaires</u> nous permet d'affirmer que 0 admet un unique antécédent α appartenant à [2:3].

C'est à dire que l'équation u(x)=0 admet une unique solution α appartenant à [2,3].

Si x>3 alors u(x)>u(3)>0 donc $u(x)\neq 0$.

Si x < 2 alors u(x) < u(2) < 0 donc $u(x) \neq 0$

Conclusion

L'équation u(x)=0 admet une unique solution α qui appartient à l'intervalle [2;3]. La calculatrice donne $\alpha = 2,21$ à 10^{-2} près

3. Si $\alpha < x$ alors $u(\alpha) = 0 < u(x)$

Si $x < \alpha$ alors $u(x) < u(\alpha) = 0$

On donne le résultat sous la forme d'un tableau :

х	0	α		$+\infty$
u(x)	-	0	+	

Partie B

1.
$$f$$
 est définie sur $]0;+\infty[$ par $f(x)=\left(1-\frac{1}{x}\right)[\ln(x)-2]+2$.

x est un réel strictement positif.

$$\lim_{x \to 0} \frac{1}{x} = +\infty \text{ donc } \lim_{x \to 0} \left(1 - \frac{1}{x} \right) = -\infty \text{ et } \lim_{x \to 0} \ln(x) = -\infty$$

Conséquence

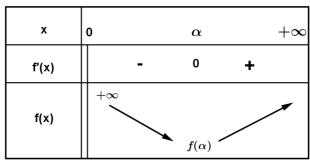
$$\lim_{x \to 0} f(x) = +\infty$$

2. f est <u>dérivable</u> sur $]0;+\infty[$

$$f'(x) = \frac{1}{x^2} \times [\ln(x) - 2] + \left(1 - \frac{1}{x}\right) \times \frac{1}{x}$$
$$f'(x) = \frac{\ln(x) - 2}{x^2} + \frac{x - 1}{x^2} = \frac{\ln(x) + x - 3}{x^2}$$

$$f'(x) = \frac{u(x)}{x^2}$$

On donne les variations de f sous <u>la forme d'un tableau</u>.



On ne nous demande pas de de calculer la limite de f(x) en $+\infty$. (<u>remarque</u>: $\lim_{x \to +\infty} f(x) = +\infty$)

Partie C

1. x appartient à l'intervalle $]0;+\infty[$.

$$f(x) - \ln(x) = \left(1 - \frac{1}{x}\right) \left[\ln(x) - 2\right] + 2 - \ln(x) = \ln(x) - \frac{\ln(x)}{x} - 2 + \frac{2}{x} + 2 - \ln(x) = \frac{2 - \ln(x)}{x}$$

$$f(x)-\ln(x)=0$$
 est l'équation aux abscisses des points d'intersection de \mathscr{C} et \mathscr{C} .
$$\frac{2-\ln(x)}{x}=0 \Leftrightarrow 2-\ln(x)=0 \Leftrightarrow \ln(x)=2 \Leftrightarrow x=e^2$$

$$\frac{2 - \ln(x)}{x} = 0 \Leftrightarrow 2 - \ln(x) = 0 \Leftrightarrow \ln(x) = 2 \Leftrightarrow x = e^2$$

$$\ln(e^2) = 2$$

$$\mathscr{C}$$
 et \mathscr{C}' ont un seul point d'intersection : $I(e^2;2)$.

2. Pour tout nombre réel x strictement positif

$$g(x) = f(x) - \ln(x) = \frac{2 - \ln(x)}{x}$$

$$g(x) = \frac{2}{x} - \frac{\ln(x)}{x}$$

$$G(x) = 2\ln(x) - H(x)$$

G est <u>une primitive</u> de g sur $]0;+\infty[$

$$\int_{1}^{e^{2}} \frac{2 - \ln(x)}{x} dx = G(e^{2}) - G(1)$$

$$\int_{1}^{e^{2}} \frac{2 - \ln(x)}{x} dx = 2 \ln(e^{2}) - \frac{1}{2} [\ln(e^{2})]^{2} - 2 \ln(1) + \frac{1}{2} [\ln(1)]^{2} = 2 \times 2 - \frac{1}{2} \times 2^{2} = 2$$

$$\int_{1}^{e^{2}} \frac{2 - \ln(x)}{x} dx = 2$$

$$2-\ln(x) \ge 0 \Leftrightarrow 2 \ge \ln(x) \Leftrightarrow e^2 \ge x$$

Sur l'intervalle $[1;e^2]$, $\mathscr C$ est au dessus de $\mathscr C$ ' et $\int\limits_{x}^{e^2} \frac{2-\ln(x)}{x} \mathrm dx$ est <u>l'aire en unités d'aire du domaine plan</u>

Amérique du Nord-juin-2015.

On joint une figure non demandée.

