

Exercice 4

Candidats n'ayant pas suivi l'enseignement de spécialité

5 points

Le plan est muni du repère orthonormé direct $(O; \vec{u}; \vec{v})$. On donne le nombre complexe $j = -\frac{1}{2} + i \frac{\sqrt{3}}{2}$.

Le but de cet exercice est d'étudier quelques propriétés du nombre j et de mettre en évidence un lien de ce nombre avec les triangles équilatéraux.

Partie A: Propriétés du nombre j

- **1.a.** Résoudre dans l'ensemble \mathbb{C} des nombres complexes l'équation : $z^2+z+1=0$
- **b.** Vérifier que le nombre complexe j est solution de cette équation.
- 2. Déterminer le module et un argument du nombre complexe j, puis donner sa forme exponentielle.
- 3. Démontrer les égalités suivantes :
- **a.** $j^3 = 1$
- **b.** $j^2 = -1 j$
- **4.** On note P, Q et R les images respectives des nombres complexes 1, j et j^2 dans le plan. Quelle est la nature du triangle PQR ? Justifier la réponse.

Partie B

Soit a, b, c trois nombres complexes vérifiant l'égalité $a+j\,b+j^2\,c=0$. On note A, B, C les images respectives des nombres a, b, c dans le plan.

- 1. En utilisant la question A.3.b, démontrer l'égalité : a-c=j(c-b).
- **2.** En déduire que AC = BC.
- 3. Démontrer l'égalité : $a-b=j^2(c-b)$.
- 4. En déduire que le triangle ABC est équilatéral.

Correction:

$$j = -\frac{1}{2} + i \frac{\sqrt{3}}{2}$$

Partie A: propriétés du nombre j

1.a.
$$z^2 + z + 1 = 0$$

$$\Delta = 1^2 - 4 \times 1 \times 1 = -3 = (i\sqrt{3})^2$$

L'équation admet <u>2 solutions complexes conjuguées</u> :

$$z_1 = \frac{-1 - i\sqrt{3}}{2} \text{ et } z_2 = \frac{-1 + i\sqrt{3}}{2}$$

b.
$$j=z_2=-\frac{1}{2}+i\frac{\sqrt{3}}{2}$$

donc j est solution de l'équation.

2.
$$|\mathbf{j}|^2 = \left(-\frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2 = \frac{1}{4} + \frac{3}{4} = 1$$

$$arg j = \theta (2\pi)$$

$$cos(\theta) = -\frac{1}{2}$$
 et $sin(\theta) = \frac{\sqrt{3}}{2}$

Done,
$$\theta = \frac{2\pi}{3} (2\pi)$$

$$j=e^{i\frac{2\pi}{2}}$$

3.a.

$$|j^2| = |j|^2 = 1^2 = 1$$

$$arg j^2 = arg j + arg j (2\pi)$$

$$arg j^2 = \frac{2\pi}{3} + \frac{2\pi}{3} (2\pi)$$

arg
$$j^2 = \frac{4\pi}{3} (2\pi)$$

$$j^3 = j^2 \times j$$

$$j^{3} = j^{2} \times j$$

 $|j^{3}| = |j^{2}| \times |j| = 1 \times 1 = 1$

$$arg j^3 = arg j^2 + arg j (2 \pi)$$

arg
$$j^3 = \frac{4\pi}{3} + \frac{2\pi}{3} (2\pi)$$

arg
$$j^3 = 0 (2 \pi)$$

donc,
$$j^3 = e^{i \times 0} = 1$$

b. j est une solution de l'équation
$$z^2+z+1=0$$
 donc $j^2+j+1=0$

Conséquence

$$j^2 = -1 - j$$

4.
$$P(1)$$
, $Q(j)$ et $R(j^2)$ on a $j^2 = e^{i\frac{4\pi}{3}} = -\frac{1}{2} - i\frac{\sqrt{3}}{2}$

$$\overrightarrow{PQ}(j-1) \qquad \overrightarrow{PR}(j^2-1) \qquad \overrightarrow{QR}(j^2-j)$$

$$\overrightarrow{PQ}\left(-\frac{3}{2} + i\frac{\sqrt{3}}{2}\right) \qquad \overrightarrow{PR}\left(-\frac{3}{2} - i\frac{\sqrt{3}}{2}\right) \qquad \overrightarrow{QR}(-i\sqrt{3})$$

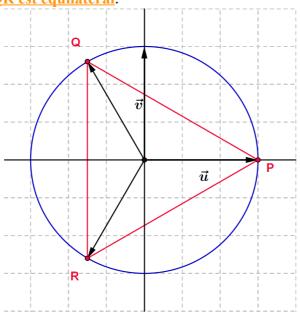
$$PQ^2 = \left(-\frac{3}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2 = \frac{9}{4} + \frac{3}{4} = \frac{12}{4} = 3$$

$$PR^2 = \left(-\frac{3}{2}\right)^2 + \left(-\frac{\sqrt{3}}{2}\right)^2 = \frac{9}{4} + \frac{3}{4} = \frac{12}{4} = 3$$

$$QR^2 = (-\sqrt{3})^2 = 3$$

Conclusion

PQ=PR=QR et <u>le triangle PQR est équilatéral</u>.



Partie B

a, b et c sont des nombres complexes vérifiant : $a+bj+cj^2=0$. A(a) B(b) C(c)

1.
$$j^2 = -1 - j$$

donc $a + jb + (-1 - j)c = 0$
 $a - c + jb - jc = 0$
 $a - c = j(c - b)$

2.
$$\overrightarrow{CA}(a-c)$$
 $\overrightarrow{BC}(c-b)$ $|a-c|=|j|\times|c-b|=|c-b|$ car $|j|=1$ Donc, $\overrightarrow{CA=BC}$

3. On a
$$1+j+j^2=0$$
 donc $j=-j^2-1$
donc, $a+(-1-j^2)b+j^2=0$
 $a-b-j^2b+j^2c=0$
 $a-b=j^2(b-c)$

Conclusion

4.
$$\overrightarrow{BA}(a-b)$$
 $\overrightarrow{CB}(b-c)$ $|a-b|=|j^2|\times|b-c|=|b-c|$ car $|j^2|=1$ $|a-b|=|j^2|x|$ $|b-c|=|b-c|$ car $|j^2|=1$ et BA=CB

CA=BC=BA <u>et le triangle ABC est équilatéral.</u>