

Exercice 1 5 points

Le plan est rapporté à un repère orthogonal (O, \vec{i}, \vec{j}) . Soit a un nombre réel strictement positif. On note Δ_a la droite d'équation y=ax et Γ la courbe représentative de la fonction exponentielle dans le repère orthogonal (O, \vec{i}, \vec{j}) .

Le but de cet exercice est de déterminer le nombre de points d'intersection de Γ et Δ_a suivant les valeurs de a. Pour cela, on considère la fonction f_a définie pour tout nombre réel x par $f_a(x) = e^x - ax$ On admet pour tout réel a que la fonction f_a est dérivable sur l'ensemble \mathbb{R} des nombres réels.

1. Étude du cas particulier a=2

La fonction f_2 est donc définie pour tout réel x par $f_2(x) = e^x - 2x$.

- **a.** Étudier les variations de la fonction f_2 sur \mathbb{R} et dresser son tableau de variations sur \mathbb{R} . (On ne demande pas de déterminer les limites aux bornes de l'ensemble de définition).
- **b.** En déduire que Δ_2 et Γ n'ont pas de point d'intersection.

2. Étude du cas général où a est un réel strictement positif

- **a.** Déterminer les limites de la fonction f_a en $+\infty$ et $-\infty$.
- **b.** Étudier les variations de f_a sur \mathbb{R} . Montrer alors que le minimum sur \mathbb{R} de la fonction f_a est $a-a\ln a$.
- c. Étudier le signe de $a-a \ln a$ suivant les valeurs du nombre réel strictement positif a.
- **d.** Déterminer selon les valeurs du réel a le nombre de points communs à Γ et Δ_a .

Correction:

1. f_2 est définie sur \mathbb{R} par $f_2(x) = e^x - 2x$.

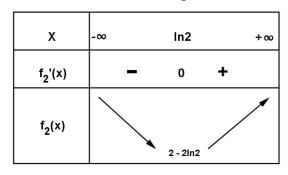
a. f_2 est dérivable sur \mathbb{R} et pour tout nombre réel x: $f_2'(x) = e^x - 2$

$$e^x - 2 = 0 \Leftrightarrow e^x = 2 \Leftrightarrow x = \ln 2$$

$$e^x - 2 > 0 \Leftrightarrow e^x > 2 \Leftrightarrow x > \ln 2$$

$$e^x - 2 < 0 \Leftrightarrow e^x < 2 \Leftrightarrow x < \ln 2$$

On donne les variations de f_2 sous <u>forme de tableau</u>:



$$f_2(\ln 2) = e^{\ln 2} - 2 \ln 2 = 2 - 2 \ln 2 > 0$$

b. $f_2(\ln 2)$ est le minimum de f_2 sur \mathbb{R} donc pour tout nombre réel x on a $f_2(x) \ge f_2(\ln 2) > 0$

Et l'équation $e^x - 2x = 0$ <u>n'admet pas de solution</u>.

 $f_2(x) = 0$ est l'équation aux abscisses des points d'intersection de Δ_2 et Γ .

Conséquence : Δ_2 et Γ n'ont pas de point d'intersection

2. Étude du cas général

a. a est un nombre réel strictement positif. Pour tout nombre réel x: $f_a(x) = e^x - ax$

$$\lim_{x \to -\infty} e^x = 0 \text{ et } \lim_{x \to -\infty} -ax = +\infty \text{ donc } \lim_{x \to -\infty} f_a(x) = -\infty$$

Pour
$$x \neq 0$$
 $f_a(x) = x \left(\frac{e^x}{x} - a\right)$

$$\lim_{x \to +\infty} \frac{e^x}{x} = +\infty \text{ donc } \lim_{x \to +\infty} \left(\frac{e^x}{x} - a\right) = +\infty$$
Conséquence :
$$\lim_{x \to +\infty} f_a(x) = +\infty$$

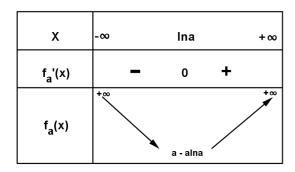
b. f_a est dérivable sur \mathbb{R} et pour tout nombre réel x on a : $f_2'(x) = e^x - a$

$$e^x - a = 0 \Leftrightarrow e^x = 2 \Leftrightarrow x = \ln a$$

$$e^x - a > 0 \Leftrightarrow e^x > a \Leftrightarrow x > \ln a$$

$$e^x - a < 0 \Leftrightarrow e^x < a \Leftrightarrow x < \ln a$$

Tableau de variations



 $f_a(\ln a) = e^{\ln a} - a \ln a = a - a \ln a$ est <u>le minimum</u> de f_a sur \mathbb{R} .

c. $a-a \ln a = a (1-\ln a)$

Or, a > 0

 $1 - \ln a = 0 \Leftrightarrow 1 = \ln a \Leftrightarrow e = a$

 $1 - \ln a > 0 \Leftrightarrow 1 > \ln a \Leftrightarrow e > a$

 $1 - \ln a < 0 \Leftrightarrow 1 < \ln a \Leftrightarrow e < a$

On donne le signe de $a-a \ln a$ sous <u>la forme d'un tableau</u>:

а	∞		е		+∞
a - alna		-	0	+	

d. Si a < e alors $a - a \ln a > 0$

 Δ_a et Γ <u>n'ont pas de point d'intersection</u>.

Si a > e alors $a - a \ln a < 0$

 f_a est <u>continue</u> et <u>strictement décroissante</u> sur $]-\infty$; $\ln a]$ à valeurs dans $[a-a \ln a; +\infty[$. Or, 0 appartient à cet intervalle donc <u>le théorème des valeurs intermédiaires</u> nous permet d'affirmer que l'équation $f_a(x)=0$ admet une solution unique α appartenant à l'intervalle $]-\infty$; $\ln a]$.

 f_a est <u>continue</u> et <u>strictement croissante</u> sur $[\ln a; +\infty[$ à valeurs dans $[a-a\ln a; +\infty[$. Or, 0 appartient à cet intervalle donc <u>le théorème des valeurs intermédiaires</u> nous permet d'affirmer que l'équation $f_a(x)=0$ admet une solution unique β appartenant à l'intervalle $[\ln a; +\infty[$.

Conséquence : l'équation aux abscisses des points d'intersection de Γ et Δ_a $f_a(x)=0$ admet deux solutions distinctes α et β donc Γ et Δ_a ont deux points d'intersection distincts.

Si[a=e] alors $a-a \ln a = e-e = 0$

 Γ et Δ_a ont un point commun <u>le point de coordonnées</u> (1; e)

Remarque : Δ_e est la tangente à Γ au point de coordonnées (1;e) .

Graphique:

