

Métropole-Septembre-2015.

Exercice 3

Candidats n'ayant pas suivi la spécialité

5 points

Dans l'espace muni d'un repère orthonormé, on considère :

- les points A (0;1;-1) et B (-2;2;-1) .
- . la droite \mathscr{D} de représentation paramétrique $\begin{cases} x = -2 + t \\ y = 1 + t \end{cases}$ $t \in \mathbb{R}$
- 1. Déterminer une représentation paramétrique de la droite (AB).
- **2.a.** Montrer que les droites (AB) et \mathcal{D} ne sont pas parallèles.
- **b.** Montrer que les droites (AB) et \mathcal{D} ne sont pas sécantes.

Dans la suite la lettre u désigne un nombre réel.

On considère le point M de la droite \mathcal{D} de coordonnées (-2+u;1+u;-1-u)

- 3. Vérifier que le plan \mathscr{P} d'équation x+y-z-3 u=0 est orthogonal à la droite \mathscr{D} et passe par le point M.
- **4.** Montrer que le plan \mathscr{P} et la droite (AB) sont sécants en un point N de coordonnées (-4+6 u; 3-3 u; -1).
- **5.a.** Montrer que la droite (MN) est perpendiculaire à la droite \mathcal{D} .
- **b.** Existe-t-il une valeur du nombre réel u pour laquelle la droite (MN) est perpendiculaire à la droite (AB).
- **6.a.** Exprimer MN² en fonction de u.
- **b.** En déduire la valeur du réel u pour laquelle la distance MN est minimale.

Correction:

1.
$$A(0;1;-1)$$
 et $B(-2:2:-1)$

(AB) est <u>une droite</u> passant par $\underline{\mathbf{A}}$ et de <u>vecteur directeur</u> $\overline{\mathbf{AB}} \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix}$

On obtient pour représentation paramétrique pour la droite (AB) : $\begin{cases} x = 0 - 2k \\ y = 1 + k \end{cases}$ k \(\in \mathbb{R}\).

2.a.
$$|\vec{V} \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}|$$
 est un vecteur directeur de \mathscr{D} .

Les vecteurs \overrightarrow{V} et \overrightarrow{AB} ne sont pas colinéaires donc les droites (AB) et \mathscr{D} ne sont pas parallèles.

b. Pour déterminer l'intersection des droites (AB) et \mathcal{D} , on résout le système :

$$\begin{cases} -2+t = 0 - 2k \\ 1+t = 1+k \\ -1-t = -1+0 k \end{cases} \Leftrightarrow \begin{cases} t+2k=2 \\ t-k=0 \\ t=0 \end{cases} \Leftrightarrow \begin{cases} k=1 \\ k=0 \\ t=0 \end{cases}$$

Le système <u>n'admet pas de solution</u> donc (AB) et \mathscr{D} <u>ne sont pas sécantes</u>.

Conclusion

Les droites (AB) et \mathcal{D} ne sont pas coplanaires.

u est un nombre réel.

$$M(-2+u;1+u;-1-u)$$

3.
$$\mathscr{P}$$
: $x+y-z-3 = 0$

$$(-2+u)+(1+u)-(-1-u)-3u=-2+u+1+u+1+u-3u=0$$

donc le point M appartient à la droite \mathcal{D} .

$$|\overrightarrow{N} \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}|$$
 est un vecteur normal à \mathcal{D} , or $\overrightarrow{N} = \overrightarrow{V}$ donc \mathcal{P} est orthogonal à \mathcal{D} .

4. Pour déterminer l'intersection du plan $\mathscr P$ et de la droite (AB) on résout le système :

$$\begin{cases} x+y-z-3 = 0 \\ x=-2 \\ y=1+k \\ z=-1 \end{cases}$$

On obtient:

$$(-2k)+(1+k)-(-1)-3 u=0 \Leftrightarrow -2k+1+k+1-3 u=0 \Leftrightarrow -k+2-3 u=0 \Leftrightarrow k=2-3 u$$

$$x=-2(2-3 u)=-4+6 u$$

$$y=1+2-3 u=3-3 u$$

$$z=-1$$

Conclusion

$$\overline{\mathscr{P}}$$
 et (AB) sont sécants en $N(-4+6u;3-3u;-1)$

Métropole-Septembre-2015.

5.a. \mathscr{D} est orthogonale à \mathscr{P} donc \mathscr{D} est orthogonale à toute droites contenue dans \mathscr{P} . La droite (MN) est contenue dans \mathscr{P} donc \mathscr{D} est <u>orthogonale</u> à (MN).

b.
$$M(-2+u; 1+u; -1-u)$$
 et $N(-4+6u; 3-3u; -1)$

$$\overline{MN}\begin{pmatrix} -2+5u \\ 2-4u \\ u \end{pmatrix}$$

Le point N appartient à (AB).

Les droites (MN) et (AB) sont <u>perpendiculaires</u> si et seulement si : \overline{MN} . $\overline{AB} = 0$

$$\overrightarrow{AB} \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix}$$

$$\overrightarrow{MN} \cdot \overrightarrow{AB} =$$

$$\overrightarrow{MN}$$
. $\overrightarrow{AB}' = (-2+5 \text{ u}) \times (-2) + (2-4 \text{ u}) \times 1 + \text{u} \times 0 = 4-10 \text{ u} + 2-4 \text{ u} = 6-14 \text{ u}$

$$\overrightarrow{MN}$$
. $\overrightarrow{AB} = 0 \Leftrightarrow 6 - 14u = 0 \Leftrightarrow u = \frac{6}{14} = \frac{3}{7}$

Pour
$$u = \frac{3}{7}$$
 les droites (MN) et (AB) sont perpendiculaires.

Remarque

Pour $u = \frac{3}{7}$, (MN) est <u>la perpendiculaire commune aux deux droites</u> non coplanaires \mathcal{D} et (AB).

6.a.
$$MN^2 = (-2 + \{5\}u)^2 + (2 - 4u)^2 + u^2 = 25u^2 - 20u + 4 + 16u^2 - 16u + 4 + u^2 = 42u^2 - 36u + 8u^2 + 4u^2 +$$

b. La fonction carré est <u>croissante</u> sur $[0;+\infty[$ donc la distance MN est <u>minimale</u> si et seulement si MN² est <u>minimal</u>.

$$f(u)=42u^2-36u+8$$

 $f'(u)=84u-36=12(7u-3)$

$$f'(u)=0 \Leftrightarrow 7u-3=0 \Leftrightarrow u=\frac{3}{7}$$
.

Conclusion

La distance MN est minimale pour $u = \frac{3}{7}$