Exercice 2 3 points

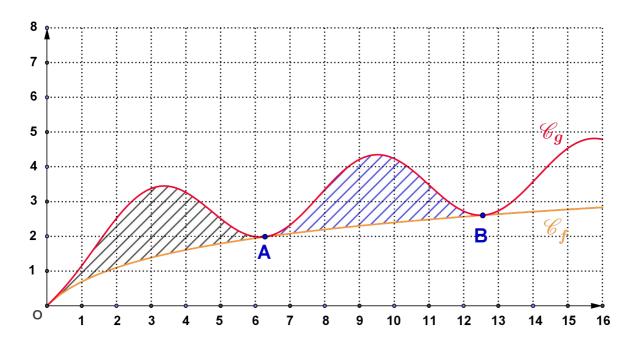
On considère les fonctions f et g définies sur l'intervalle [0;16] par $f(x)=\ln(x+1)$ et $g(x)=\ln(x+1)+1-\cos(x)$

Dans un repère $(O; \vec{i}; \vec{j})$, on note \mathscr{C}_{f} et \mathscr{C}_{g} les courbes représentatives des fonctions f et g.

Ces courbes sont données en annexe 1.

Comparer les aires des deux surfaces hachurées sur ce graphique.

ANNEXE 1



CORRECTION

Pour tout nombre réel x de l'intervalle [0;16]

$$f(x) = \ln(x+1)$$
 et $g(x) = \ln(x+1) + 1 - \cos(x)$

$$g(x)-f(x)=1-\cos(x) \ge 0$$

On détermine les coordonnées des points communs à \mathscr{C}_{f} et \mathscr{C}_{g} .

$$g(x)=f(x) \Leftrightarrow 1-\cos(x)=0 \Leftrightarrow \cos(x)=1$$

donc $x=2k\pi$ (k entier relatif) et $0 \le x \le 16$

- Pour k=0 x=0 O(0;0)
- Pour k=1 $x=2\pi$ A $(2\pi; \ln(2\pi+1))$
- Pour k=2 $x=4\pi$ B $(4\pi; \ln(4\pi+1))$

Si
$$k \ge 3$$
 alors $x > 16$

L'aire (en U.A.) de la première surface hachurée est l'aire de la partie de plan comprise entre \mathscr{C}_{f}

et
$$\mathscr{C}_{g}$$
 sur l'intervalle $[0;2\pi]$ cette aire est égale à :
$$\int_{0}^{2\pi} (g(x)-f(x))dx = \int_{0}^{2\pi} (1-\cos(x))dx$$

$$h(x)=1-\cos(x) \qquad H(x)=x-\sin(x)$$

H est une primitive de h sur [0;16]

$$\int_{0}^{2\pi} (1 - \cos(x)) dx = (2\pi) - H(0) = 2\pi - \sin(2\pi) - 0 + \sin(0) = 2\pi \quad (U.A.)$$

L'aire (en U.A.) dela deuxième surface hachurée est l'aire de la partie de plan comprise entre \mathscr{C}_{f}

et
$$\mathscr{C}_{g}$$
 sur l'intervalle $[2\pi; 4\pi]$, cette aire est égale à : $\int_{2\pi}^{4\pi} (g(x) - f(x)) dx = \int_{2\pi}^{4\pi} (1 - \cos(x)) dx$ = $F(4\pi) - F(2\pi) = 4\pi - \sin(4\pi) - 2\pi + \sin(2\pi) = 4\pi - 2\pi = 2\pi$

Conclusion

Les deux surfaces hachurées ont la même aire.