Exercice 3 6 points

Dans le repère orthonormé $(O; \vec{i}; \vec{j}; \vec{k})$ de l'espace, on considère pour tout réel m le plan P_m d'équation : $\frac{1}{4}$ m² x + (m-1) y + $\frac{1}{2}$ m z - 3 = 0.

- 1. Pour quelle(s) valeur(s) de m le point A(1;1;1) appartient-il au plan P_m ?
- 2. Montrer que les plan P_1 et P_{-4} sont sécants selon la droite (d) de représentation paramétrique :

(d)
$$\begin{cases} x = 12 - 2t \\ y = 9 - 2t \\ z = t \end{cases}$$
 t décrit \mathbb{R}

- 3.a. Montrer que l'intersection entre P_0 et (d) est un point noté B dont on déterminera les coordon
 - **b.** Justifier que pour tout réel m, le point B appartient au plan P_m.
 - c. Montrer que le point B est l'unique point appartenant à P_m pour tout réel m.
- 4. Dans cette question, on considère deux entiers relatifs m et m' tels que :

```
-10 \le m \le 10 et -10 \le m' \le 10
```

On souhaite déterminer les valeurs de m et de m' pour lesquelles P_m et P_m sont perpendiculaires.

- **a.** Vérifier que P_1 et P_{-4} sont perpendiculaires.
- **b.** Montrer que les plans P_m et $P_m^{'}$ sont perpendiculaires si et seulement si :

$$\left(\frac{\text{mm'}}{4}\right)^2 + (\text{m}-1)(\text{m'}-1) + \frac{\text{mm'}}{4} = 0$$

c. On donne l'algorithme suivant :

m et m' sont des entiers relatifs Variables: **Traitement:** Pour m allant de -10 à 10 : Pour m' allant de -10 à 10 Si $(mm')^2+16(m-1)(m'-1)+4mm'=0$ Alors Afficher (m; m') Fin du Pour Fin du Pour

Quel est le rôle de cet algorithme ?

d. Cet algorithme affiche des couples d'entiers dont (-4;1), (0;1) et (5;-4). Ecrire les six couples dans l'ordre d'affichage de l'algorithme.

CORRECTION

Pour tout nombre réel m, le plan P_m a pour équation : $\frac{1}{4}m^2x + (m-1)y + \frac{1}{2}mz - 3 = 0$.

1. Le point A appartient au plan P_m si et seulement si : $\frac{1}{4}m^2 \times 1 + (m-1) \times 1 + \frac{1}{2}m \times 1 - 3 = 0$ $\Leftrightarrow \frac{1}{4}m^2 + m - 1 + \frac{1}{2}m - 3 = 0 \Leftrightarrow \frac{1}{4}m^2 + \frac{3}{2}m - 4 = 0 \Leftrightarrow m^2 + 6m - 16 = 0$

$$\Delta = 36 - 4 \times (-16) \times 1 = 36 + 64 = 100 = 10^{2}$$

 $m' = \frac{-6 - 10}{2} = -8$ et $m'' = \frac{-6 + 10}{2} = 2$

Le point A(1;1;1) Appartient au plan P_m si et seulement si m = -8 ou m = 2.

2. $P_1: \frac{1}{4}x + 0 \times y + \frac{1}{2}z - 3 = 0 \Leftrightarrow P_1: x + 2z - 12 = 0$ $P_4: 4x - 5y - 2z - 3 = 0$

Pour déterminer l'intersection des plans P_1 et P_{-4} , on résout le système : $\begin{cases} x+2z-12=0\\ 4x-5y-2z-3=0 \end{cases}$

On pose z=t (t nombre réel) on obtient x=2t-12

et on détermine y dans l'autre équation :

$$5y=4x-2z-3=4(-2t+12)-2t-3=-8t+48-2t-3=-10t+45$$

 $y=-2t+9$

On obtient pour représentation paramétrique de la droite (d) : $\begin{cases} x = -2t + 12 \\ y = -2t + 9 \\ z = t \end{cases}$ t décrit \mathbb{R}

3.a. P_0 a pour équation cartésienne -y-3=0.

Pour déterminer l'intersection de P_0 et (d) ou résout le système : $\begin{cases} -y-3=&0\\ x=-2t+12\\ y=-2t+9\\ z=&t \end{cases}$

On obtient $-3=-2t+9 \Leftrightarrow 2t=12 \Leftrightarrow t=6$ et $x=-2\times 6+12=0$; y=-3; z=6. P_0 et (d) sont sécants en B(0;-3;6)

b. Pour tout nombre réel m : $m^2 \times 0 + (m-1) \times (-3) + \frac{1}{2} m \times 6 - 3 = 0 \times m^2 - 3 m + 3 + 3 m - 3$ = $0 \times m^2 + 0 \times m + 0 = 0$

Donc le point B appartient au plan P_m pour toute valeur de m.

c. Tout point appartenant à tous les plans P_m , appartient aux plans P_1 et P_{-4} donc à leur droite d'intersection (d). le point considéré appartient aussi au plan P_0 donc à l'intersection de P_0 et (d) soit $\{B\}$.

Conclusion

B est l'unique point appartenant à tous les plans $P_{\rm m}$.

4.a. P_1 : x+2z-12=0 $\overrightarrow{N_1} \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}$ est un vecteur normal à P_1 .

$$P_{-4}: 4x-5y-2z-3=0$$
 $\overrightarrow{N}_{-4} \begin{pmatrix} 4\\ -5\\ -2 \end{pmatrix}$ est un vecteur normal à P_{-4}

 P_1 et P_{-4} sont perpendiculaires si et seulement si $\overline{N_1}$ et $\overline{N_{-4}}$ sont orthogonaux.

$$\overrightarrow{N_1}$$
. $\overrightarrow{N_{-4}} = 1 \times 4 + 0 \times (-5) + 2 \times (-2) = 4 - 4 = 0$

donc les plans P_1 et P_{-4} sont orthogonaux.

b.
$$P_m: \frac{1}{4}m^2x + (m-1)y + \frac{1}{2}mz - 3 = 0$$
 $\overrightarrow{N_m} \begin{pmatrix} \frac{1}{4}m^2 \\ m-1 \\ \frac{1}{2}m \end{pmatrix}$ est un vecteur normal à P_m .

$$P_{m'}: \frac{1}{4}m'^2x + (m'-1)y + \frac{1}{2}m'z - 3 = 0$$
 $N_{m'} \begin{pmatrix} \frac{1}{4}m'^2 \\ m' - 1 \\ \frac{1}{2}m' \end{pmatrix}$ est un vecteur normal à $P_{m'}$.

 $P_{\rm m}$ et $P_{\rm m}$, sont perpendilaires si et seulement si $\overline{N_{\rm m}}$. $\overline{N_{\rm m'}} = 0$

$$\overrightarrow{N}_{m} \cdot \overrightarrow{N}_{m'} = \frac{1}{16} m^2 m'^2 + (m-1)(m'-1) + \frac{1}{4} m m' = 0$$

$$\left(\frac{mm'}{4}\right)^2 + (m-1)(m'-1) + \frac{mm'}{4} = 0$$

c. Cet algorithme, permet de déterminer les couples d'entiers relatifs (m; m') vérifiant $-10 \le m \le 10$ et $-10 \le m' \le 10$ tels que P_m et $P_{m'}$ sont perpendiculaires.

d. Remarque

 P_m et P_m , sont perpendiculaires si seulement si P_m , et P_m sont perpendiculaires (et on ne peut pas avoir m = m').

Conséquence

Si le couple (a;b) est solution alors le couple (b;a) est aussi solution.

Les six couples affichés par l'algorithme sont donc :

$$(-4;1)$$
; $(0;1)$; $(5;-4)$; $(1;-4)$; $(1;0)$ et $(-4;5)$.

Ranger dans d'affichage (ordre lexicographique)

$$(-4;1)$$
; $(-4;5)$; $(0;1)$; $(1;-4)$; $(1;0)$ et $(5;-4)$.