Exercice 3 3 points

Les deux parties de cet exercice sont indépendantes.

Partie A

Soit la fonction f définie sur l'ensemble des nombres réels par $f(x)=2e^x-e^{2x}$ et $\mathscr C$ sa courbe représentative dans un repère orthonormé. On admet que, pour tout x appartement à $[0;\ln(2)]$, f(x) est positif. Indiquer si la proposition suivante est vraie on fausse en justifiant votre réponse.

Proposition A:

L'aire du domaine délimité par les droites d'équations x=0 et $x=\ln(2)$, l'axe des abscisses et la courbe $\mathscr C$ est égale à 1 unité d'aire.

Partie B

Soit n un entier strictement positif.

Soit la fonction f_n définie sur l'ensemble des nombres réels par $f_n(x)=2$ n e^x-e^{2x} et \mathcal{C}_n sa représentation graphique dans un repère orthonormé. On admet que f_n est dérivable et que \mathcal{C}_n admet une tangente horizontale en un unique point S_n . Indiquer si la proposition suivante est vraie ou fausse en justifiant votre réponse.

Proposition B:

Pour tout entier strictement positif n l'ordonnée du point S_n est n^2

CORRECTION

Partie A

Pour tout nombre réel x : $f(x)=2e^x-e^{2x}$

Proposition A: FAUSSE

Justifications

f est continue et positive sur l'intervalle [0;ln(2)] donc l'aire, en unité d'aire, de la partie de plan comprise entre les droites d'équations x=0 et x=ln(2), la courbe \mathscr{C} et l'axe des abscisses est : $\int_{0}^{\ln 2} f(x) dx$.

Soit a un nombre réel non nul fixé, si g est une fonction définie sur \mathbb{R} par $g(x)=e^{ax}$ alors la fonction G, définie sur \mathbb{R} par $G(x) = \frac{1}{2}e^{ax}$, est une primitive de g sur \mathbb{R} .

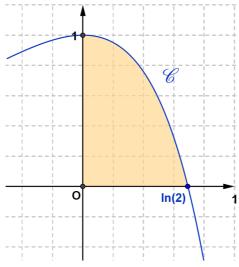
Donc F, définie sur [0;ln(2)] par $F(x)=2e^x-\frac{1}{2}e^x$, est une primitive de f sur [0;ln(2)].

$$\int_{0}^{\ln 2} f(x) dx = F(\ln(2)) - F(0) = 2e^{\ln(2)} - \frac{1}{2}e^{2\ln(2)} - 2e^{0} + \frac{1}{2}e^{0} = 2 \times 2 - \frac{1}{2} \times 4 - 2 + \frac{1}{2} = \frac{1}{2}$$

Conclusion

L'aire du domaine considéré est égale à $\frac{1}{2}$ donc la proposition A est fausse.

On donne une représentation graphique (non demandée).



Partie B

n est un entier naturel non nul et x est un nombre réel

$$f_n(x) = 2 n e^x - e^{2x}$$

Proposition B: VRAIE

Justifications

$$f_n$$
 est dérivable sur \mathbb{R}
 $f_n(x)' = 2 n e^x - 2 e^{2x} = 2 n e^x - e^x \times e^x = 2 e^x (n - e^x)$

$$e^{x} > 0$$
 donc $f_{n}(x) = 0 \Leftrightarrow n - e^{x} = 0 \Leftrightarrow n = e^{x} \Leftrightarrow x = \ln(n)$

L'unique point S_n où \mathscr{C}_n admet une tangente horizontale a pour abscisse : ln(n). L'ordonnée de S_n est : $f_n(ln(n)) = 2 \, n \, e^{ln(n)} - e^{2 \, ln(n)} = 2 \, n \times n - e^{ln(n^2)} = 2 \, n^2 - n^2 = n^2$

Conclusion

La proposition B est vraie.