

Candidats ayant suivi l'enseignement de spécialité **EXERCICE 4** 5 points

Deux matrices colonnes $\begin{pmatrix} x \\ y \end{pmatrix}$ et $\begin{pmatrix} x' \\ y' \end{pmatrix}$ à coefficients entiers sont dites congrues modulo 5 si et seulement si

Deux matrices carrées d'ordre 2 $\begin{pmatrix} a & c \\ b & d \end{pmatrix}$ et $\begin{pmatrix} a' & c' \\ b' & d' \end{pmatrix}$ à coefficients entiers sont dites congrues modulo 5

si et seulement si
$$\begin{cases} a \equiv a'(5) \\ b \equiv b'(5) \\ c \equiv c'(5) \\ d \equiv d'(5) \end{cases}$$

Alice et Bob veulent s'échanger des messages en utilisant la procédure décrite ci-dessous.

- . Ils choisissent une matrice M carrée d'ordre 2, à coefficients entiers.
- . Leur message initial est écrit en lettre majuscule sans accent.

	0	1	2	3	4
0	Α	В	C	D	Е
1	F	G	Η	_	J
2	K	L	М	N	0
3	Р	Q	R	s	Т
4	U	V	Х	Υ	z

Remarque : la lettre W est remplacée par les deux lettres accolées V.

- . Chaque lettre de ce message est remplacée par une matrice colonne $\begin{pmatrix} x \\ y \end{pmatrix}$ déduite du tableau ci-dessus : x est le chiffre situé en haut de la colonne et y est le chiffre situé à gauche de la ligne ; par exemple, la lettre T d'un message initial correspond à la matrice colonne $\begin{pmatrix} 4 \\ 2 \end{pmatrix}$.
- . On calcule une nouvelle matrice $\begin{pmatrix} x' \\ y' \end{pmatrix}$ en multipliant $\begin{pmatrix} x \\ v \end{pmatrix}$ à gauche par la matrice : $\begin{pmatrix} x' \\ v' \end{pmatrix} = M \begin{pmatrix} x \\ v \end{pmatrix}$.
- . On calcule r'et t' les restes respectifs des divisions euclidiennes de x'et y' par 5.
- . On utilise le tableau ci-dessus pour obtenir la nouvelle lettre correspondant à la matrice colonne $\begin{pmatrix} r' \\ t' \end{pmatrix}$.
- **1.** Alice et Bob choisissent la matrice $M = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$.
- **1.a.** Montrer que la lettre « T » du message initial est codée par la lettre « U » puis coder le message « TE ». **1.b.** On pose $P = \begin{pmatrix} 3 & 1 \\ 4 & 2 \end{pmatrix}$. Montrer que les matrices PM et $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ sont congrues modulo 5.
- 1.c. On considère A et A' deux matrices carrées d'ordre 2 à coefficients entiers congrues modulo 5 et $Z = \begin{pmatrix} x \\ y \end{pmatrix}$

 $Z' = \begin{pmatrix} x' \\ y' \end{pmatrix}$ deux matrices colonnes à coefficients entiers congrues modulo 5. Montrer alors que les

matrices AZ et AZ' sont congrues modulo 5.

Dans ce qui suit on admet que si A et A' sont deux matrices carrées d'ordre 2 à coefficients entiers congrues modulo 5 et si B et B' sont deux matrices carrées d'ordre 2 à coefficients entiers congrues modulo 5 alors les les matrices produit AB et A'B' sont congrues modulo 5.

- **1.d.** On note $X = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ et $Y = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$ deux matrices colonnes à coefficients entiers. Déduire des questions précédentes que si MX et Y sont sont congrues modulo 5 alors les matrices X et PY sont congrues modulo 5 ; ce qui permet de « décoder » une lettre chiffrée par la procédure utilisée par Alice et Bob avec la matrice M choisie.
- 1.e. Décoder la lettre « D ».
- 2. On souhaite déterminer si la matrice $R = \begin{pmatrix} 1 & 2 \\ 4 & 3 \end{pmatrix}$ peut être utilisée pour coder un message. 2.a. On pose $S = \begin{pmatrix} 2 & 2 \\ 4 & 4 \end{pmatrix}$. Vérifier que la matrice RS et la matrice $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ sont congrues modulo 5.
- **2.b.** On admet qu'un message codé par la matrice R peut être décodé s'il existe une matrice T telle que les matrices TR et I soient congrues modulo 5. Montrer que si c'est le cas alors les matrices TRS et S sont congrues modulo 5 (par la procédure expliquée en question 1.d. pour le codage avec la matrice M).
- **2.c.** En déduire qu'un message codé par la matrice R ne peut être décodé.

CORRECTION

Remarque: Dans cet exercice W est un mot de deux lettres.

1.a. À la lettre « T » correspond la matrice $\begin{pmatrix} 4 \\ 3 \end{pmatrix}$.

$$M\begin{pmatrix} 4 \\ 3 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 4 \\ 3 \end{pmatrix} = \begin{pmatrix} 1 \times 4 + 2 \times 3 \\ 3 \times 4 + 4 \times 3 \end{pmatrix} = \begin{pmatrix} 10 \\ 24 \end{pmatrix}$$

$$10=2\times 5+0$$
 et $24=4\times 5+4$

$$M\begin{pmatrix} 4\\3 \end{pmatrix} \equiv \begin{pmatrix} 0\\4 \end{pmatrix} (5)$$

À la matrice $\begin{pmatrix} 0 \\ 4 \end{pmatrix}$ correspond la lettre « U ».

Conclusion

La lettre « T » est codée par la lettre « U ».

. À la lettre « E » correspond la matrice $\begin{pmatrix} 4 \\ 0 \end{pmatrix}$.

$$M\begin{pmatrix} 4 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 4 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \times 4 + 2 \times 0 \\ 3 \times 4 + 4 \times 0 \end{pmatrix} = \begin{pmatrix} 4 \\ 12 \end{pmatrix}$$

$$4=0\times5+4$$
 et $12=2\times5+2$

$$M\begin{pmatrix} 4\\0 \end{pmatrix} \equiv \begin{pmatrix} 4\\2 \end{pmatrix} (5).$$

À la matrice $\begin{pmatrix} 4 \\ 2 \end{pmatrix}$ correspond la lettre « O ».

Conclusion

Le message « TE » est codé en « UO ».

. Remarque : (résultat non demandé)

À la lettre « V » correspond la matrice $\begin{pmatrix} 1 \\ 4 \end{pmatrix}$.

$$M\begin{pmatrix}1\\4\end{pmatrix} = \begin{pmatrix}1&2\\3&4\end{pmatrix}\begin{pmatrix}1\\4\end{pmatrix} = \begin{pmatrix}9\\19\end{pmatrix}$$

$$9 = 1 \times 5 + 4$$
 et $19 = 3 \times 5 + 4$

$$\begin{pmatrix} 9 \\ 19 \end{pmatrix} \equiv \begin{pmatrix} 4 \\ 4 \end{pmatrix} (5)$$

À la matrice $\begin{pmatrix} 4 \\ 4 \end{pmatrix}$ correspond la lettre « Z ».

Conclusion

Le message « W » est codé par le message « ZZ ».

1.b.
$$PM = \begin{pmatrix} 3 & 1 \\ 4 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} 6 & 10 \\ 10 & 16 \end{pmatrix}$$
.

$$6=1\times5+1$$
 et $10=2\times5+0$ et $16=3\times5+1$

$$\begin{pmatrix} 6 & 10 \\ 10 & 16 \end{pmatrix} \equiv \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} (5)$$

$$PM \equiv I(5)$$

1.c.
$$A = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$$
 $A' = \begin{pmatrix} a' & c' \\ b' & d' \end{pmatrix}$ $Z = \begin{pmatrix} x \\ y \end{pmatrix}$ $Z' = \begin{pmatrix} x' \\ y' \end{pmatrix}$ $AZ = \begin{pmatrix} ax + cy \\ bx + dy \end{pmatrix}$ $A'Z' = \begin{pmatrix} a'x' + c'y' \\ b'x' + d'y' \end{pmatrix}$

$$A \equiv A'(5) \qquad \Leftrightarrow \qquad \begin{cases} a \equiv a'(5) \\ b \equiv b'(5) \\ c \equiv c'(5) \\ d \equiv d'(5) \end{cases} \qquad Z \equiv Z'(5) \qquad \Leftrightarrow \qquad \begin{cases} x \equiv x'(5) \\ y \equiv y'(5) \end{cases}$$

En utilisant les propriétés sur les congruences somme et produit), on obtient :

$$ax+cy \equiv a'x'+c'y'(5)$$
 et $bx+dy \equiv b'x'+d'y'(5)$
donc $AZ \equiv A'Z'(5)$

A, A', B et B' sont 4 matrices carrées d'ordre 2 à coefficients entiers, on admet que si :

$$\begin{cases} A \equiv A'(5) \\ B \equiv B'(5) \end{cases} \quad alors \quad AB \equiv A'B'(5)$$

1.d.
$$X = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$
 $Y = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$

On utilise le résultat de la question 1.c. avec A=A'=P ($P\equiv P(5)$) et Z=MX et Z'=Y ($Z\equiv Z'(5)$) On obtient :

$$P(MX) \equiv PY(5)$$

Or
$$P(MX)=(PM)X$$
 et $PM \equiv I(5)$ donc $(PM)X \equiv IX(5)$
 $IX=X$ donc $(PM)X \equiv X(5)$

Conséquences:

$$X \equiv PY(5)$$

Connaissant la lettre codée, on détermine sa matrice correspondante Y, puis on calcule PY et on détermine la matrice X congrue à PY puis la lettre initiale correspondante à X.

1.e. Pour la lettre codée « D » correspond la matrice $Y = \begin{pmatrix} 3 \\ 0 \end{pmatrix}$

$$PY = \begin{pmatrix} 3 & 1 \\ 4 & 2 \end{pmatrix} \begin{pmatrix} 3 \\ 0 \end{pmatrix} = \begin{pmatrix} 9 \\ 12 \end{pmatrix}$$

$$9 = 1 \times 5 + 4 \quad \text{et} \quad 12 = 2 \times 5 + 2$$

$$\begin{pmatrix} 9 \\ 2 \end{pmatrix} \equiv \begin{pmatrix} 4 \\ 2 \end{pmatrix} (5)$$

La lettre correspondante à la matrice $\begin{pmatrix} 4 \\ 2 \end{pmatrix}$ est la lettre « J ».

Conclusion:

La lettre décodée de la lettre « D » est la lettre «J ».

2.a.
$$R = \begin{pmatrix} 1 & 2 \\ 4 & 3 \end{pmatrix}$$
 $S = \begin{pmatrix} 2 & 2 \\ 4 & 4 \end{pmatrix}$ $RS = \begin{pmatrix} 2+8 & 2+8 \\ 8+12 & 8+12 \end{pmatrix} = \begin{pmatrix} 10 & 10 \\ 20 & 20 \end{pmatrix}$
 $RS \equiv \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ (5)

2.b. A=TR A'=I
$$A \equiv A'(5)$$

$$B=B'=S$$
 $B\equiv B'(5)$

donc
$$AB \equiv A'B'(5)$$
 et $TRS \equiv IS(5)$

or IS=S donc
$$TRS \equiv S(5)$$

2.c. Un message codé par la matrice R peut être décodé s'il existe une matrice T telle que $TR \equiv I(5)$. Si on suppose qu'il existe une matrice T telle que $TR \equiv I(5)$ alors $TRS \equiv S(5)$.

Or TRS=T(RS)=T
$$\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$
 on doit done avoir S $\equiv \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ (5)

Ce résultat est absurde donc l'hypothèse proposée est fausse.

Conclusion

Il n'existe pas de matrice T telle que $TR \equiv I(5)$ et un message codé par la matrice R ne peut pas être décodé.

Remarque

On peut remarquer que les lettres « A »' « L », « X », « I » et « T » sont codées par la même lettre « A » avec la matrice R (donc on ne peut pas décoder la lettre « A »).