

EXERCICE 1 6 points

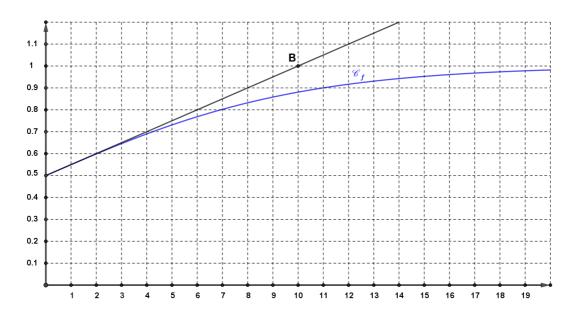
Partie A

Soit a et b des nombres réels. On considère une fonction f définie sur $[0;+\infty[$ par :

$$f(x) = \frac{a}{1 + e^{-bx}}$$

La courbe \mathscr{C}_{f} représentant la fonction f dans un repère orthogonal est donnée ci-dessous.

La courbe \mathscr{C}_{f} passe par le point A(0;0,5). La tangente à la courbe \mathscr{C}_{f} au point A passe par le point B(10;1).



1. Justifier que a = 1.

On obtient alors, pour tout réel $x \ge 0$, $f(x) = \frac{1}{1 + e^{-bx}}$.

2. On admet que la fonction f est dérivable sur $[0;+\infty[$ et on note f' sa fonction dérivée.

Vérifier que, pour tout réel $x \ge 0$, $f'(x) = \frac{be^{-bx}}{(1+e^{-bx})^2}$

3. En utilisant les données de l'énoncé, déterminer b.

Partie B

La proportion d'individus qui possèdent un certain type d'équipement dans une population est mobilisée par la fonction p définie sur $[0;+\infty[$ par : $p(x)=\frac{1}{1+e^{-0.2x}}$.

Le réel x représente le temps écoulé, en année, depuis le 1^{er} janvier 2000.

Le nombre p(x) modélise la proportion d'individus équipés arès x années.

Ainsi, pour ce modèle, p(0) est la proportion d'individus équipés au 1^{er} janvier 2000 et p(3,5) est la proportion d'individus équipés au milieu de l'année 2003.

1. Quelle est, pour ce modèle, la proportion d'individus équipés au 1^{er} janvier 2010 ? On en donnera une valeur arrondie au centième.

- **2.a.** Déterminer le sens de variation de la fonction p sur $[0;+\infty[$.
- **2.b.** Calculer la limite de la fonction p en $+\infty$.
- 2.c. Interpréter cette limite dans le contexte de l'exercice.
- **3.** On considère que, lorsque la proportion d'individus équipés dépasse 95 %, le marché est saturé. Déterminer, en expliquant la démarche, l'année au cours de laquelle cela se produit.
- 4. On définit la proportion moyenne d'individus équipés entre 2008 et 2010 par :

$$m = \frac{1}{2} \int_{8}^{10} p(x) dx$$
.

4.a. Vérifier que, pour tout réel $x \ge 0$,

$$p(x) = \frac{e^{0,2x}}{1 + e^{0,2x}}.$$

- **4.b.** En déduire une primitive de la fonction p sur $[0;+\infty[$.
- **4.c.** Déterminer la valeur exacte de m et son arrondi au centième.

CORRECTION

Partie A

1. La courbe représentative de f, \mathscr{C}_f , passe par le point A(0;0,5) donc f(0) = 0,5.

Or
$$f(x) = \frac{a}{1 + e^{-bx}}$$
 donc $f(0) = \frac{a}{1 + e^0} = \frac{a}{2}$

$$f(0)=0.5 \Leftrightarrow \frac{a}{2}=0.5 \Leftrightarrow a=1$$

et
$$f(x) = \frac{1}{1 + e^{-bx}}$$

2. $(e^{u})' = u'e^{u}$ $(e^{-bx})' = -be^{-bx}$ et $(1+e^{-bx})' = -be^{-bx}$

On dérive l'inverse d'une fonction.

$$f'(x) = \frac{-(-be^{-bx})}{(1+e^{-bx})^2} = \frac{be^{-bx}}{(1+e^{-bx})^2}$$
.

3. La droite (AB) est la tangente à \mathscr{C}_f au point A(0;0,5) donc f'(0) est égal au coefficient directeur de la droite (AB).

$$m = \frac{1 - 0.5}{1 - 0} = \frac{0.5}{10} = 0.05$$

$$f'(0) = \frac{be^0}{(1+e^0)^2} = \frac{b}{4}$$

donc
$$\frac{b}{4} = 0.05 \Leftrightarrow b = 0.2$$

et
$$f(x) = \frac{1}{1 + e^{-0.2x}}$$

Partie B

1. La proportion d'individus équipés au 1^{er} janvier 2010 est égale à p(10).

$$p(10) = \frac{1}{1 + e^{-2}} = 0.88$$
 au centième près.

2.a. Pour tout nombre réel x de l'intervalle $[0;+\infty[$ $p(x)=\frac{0.2 e^{-0.2 x}}{(1+e^{-0.2 x})^2}>0$

donc p est strictement croissante sur $[0;+\infty[$

2.b.
$$\lim_{x \to +\infty} -0.2 x = -\infty$$
 donc $\lim_{x \to +\infty} e^{-0.2 x} = 0$ et $\lim_{x \to +\infty} \frac{1}{1 + e^{0.2 x}} = \frac{1}{1 + 0} = 1$

- 2.c. Dans un avenir lointain presque tous les individus de la population seront équipés.
- 3. $p(x) \ge 0.95 \Leftrightarrow \frac{1}{1 + e^{-0.2x}} \ge 0.95 \Leftrightarrow \frac{1}{0.95} \ge 1 + e^{-0.2x} \Leftrightarrow \frac{0.05}{0.95} \ge e^{-0.2x} \Leftrightarrow \frac{1}{19} \ge e^{-0.2x}$

La fonction ln est strictement croissante sur $[0;+\infty[$

$$\Leftrightarrow \ln\left(\frac{1}{19}\right) \geqslant \ln\left(e^{-0.2x}\right) \quad \Leftrightarrow \quad -\ln\left(19\right) \geqslant -0.2x \quad \Leftrightarrow \quad \frac{-\ln\left(19\right)}{-0.2} \leqslant x \quad \Leftrightarrow \quad \frac{\ln\left(19\right)}{0.2} \leqslant x$$

$$\frac{\ln(19)}{0.2}$$
 = 14,72 à 10⁻² près.

Antilles-Guyane juin 2019

Le marché est donc saturé au cours de l'année 2014.

4.a.
$$p(x) = \frac{1}{1 + e^{-0.2x}} = \frac{1 \times e^{0.2x}}{(1 + e^{-0.2x}) \times e^{0.2x}} = \frac{e^{0.2x}}{e^{0.2x} + e^0} = \frac{e^{0.2x}}{1 + e^{0.2x}}$$

4.b.
$$u(x)=1+e^{0.2x}$$
 $u'(x)=0.2e^{0.2x}$ $p(x)=\frac{1}{0.2}\times\frac{0.2}{1+e^{0.2x}}=\frac{1}{0.2}\times\frac{u'(x)}{u(x)}=5\times\frac{u'(x)}{u(x)}$

donc la fonction P définie sur $[0;+\infty[$ par $P(x)=5\times \ln(u(x))=5\times \ln(1+e^{0,2x})$ est une primitive de p.

4.c.
$$m = \frac{1}{2} \int_{8}^{10} p(x) dx$$

$$\int_{8}^{10} p(x) dx = P(10) - P(8) = 5 \ln(1 + e^{2}) - 5 \ln(1 + e^{1.6})$$

$$m=2.5(\ln(1+e^2)-\ln(1+e^{1.6}))=0.86 \text{ à } 10^{-2} \text{ près.}$$