

EXERCICE 4 Candidats ayant suivi l'enseignement de spécialité 5 points

On considère la suite (a_n) définie pour tout entier naturel n par : $a_n = \frac{4^{2n+1}+1}{5}$.

- 1. Calculer a_2 et a_3 .
- 2. Démontrer que pour tout entier naturel n, $a_{n+1} = 16a_n 3$.
- 3. Démontrer que, pour tout entier naturel n, a_n est un entier naturel.
- 4. Dans cette question on utilise l'égalité de la question 2, afin de démontrer plusieurs propriétés de termes de la suite (a_n) .
- **4.a.** Pour tout entier naturel n, on note d_n le plus grand diviseur commun de a_n et a_{n+1} . Démontrer que, pour tout entier naturel n, d_n est égal à 1 ou à 3.
- **4.b.** Démontrer que, pour tout entier naturel n, $a_{n+1} \equiv a_n$ (3)
- **4.c.** Vérifier que $a_0 \equiv 1$ (3). En déduire que, pour tout entier naturel n, le nombre a_n n'est pas divisible par 3.
- **4.d.** Démontrer alors que, pour tout entier nature a_n et a_{n+1} sont premiers entre eux.
- 5. L'objectif de cette question est de démontrer que, pour tout entier n supérieur à 2, le nombre a_n n'est pas premier.

On pose pour tout entier naturel n,

$$b_n = 2^{n+1}(2^n - 1) + 1$$
 et $c_n = 2^{n+1}(2^n + 1) + 1$.

On admet que, pour tout entier n supérieur ou égal à 2,

$$5a_n = b_n c_n$$

- **5.a.** Démontrer que, pour tout entier n supérieur ou égal à 2, 5 divise b_n ou 5 divise c_n .
- **5.b.** Soit n un entier supérieur ou égal à 2.
 - Démontrer que $b_n > 5$ et $c_n > 5$.
- **5.c.** En déduire que a_n n'est pas un nombre premier.

CORRECTION

Pour tout entier naturel n, $a_n = \frac{4^{2n+1}+1}{5}$.

1.
$$a_2 = \frac{4^5 + 1}{5} = \frac{1024 + 1}{5} = \frac{1025}{5} = 205$$

1.
$$a_2 = \frac{4^5 + 1}{5} = \frac{1024 + 1}{5} = \frac{1025}{5} = \frac{205}{5}$$
 $a_3 = \frac{4^7 + 1}{5} = \frac{16384 + 1}{5} = \frac{16385}{5} = \frac{3277}{5}$

2. Pour tout entier naturel n

$$16a_{n} - 3 = 16 \times \frac{4^{2n+1} + 1}{5} - 3 = \frac{16 \times 4^{2n+1} + 16 - 15}{5} = \frac{4^{2} \times 4^{2n+1} - 1}{5} = \frac{4^{2n+3} - 1}{5} = \frac{4^{2(n+1)+1} - 1}{5} = a_{n+1}.$$

3. On veut démontrer en utilisant un raisonnement par récurrence que pour tout entier naturel n, a_n est un entier naturel.

Initialisation

$$a_0 = \frac{4^1 + 1}{5} = 1$$

La propriété est vérifiée pour n=0.

<u>Hérédité</u>

Pour démontrer que la propriété est héréditaire pour tout entier naturel n, on suppose que a_n est un entier naturel et on doit démontrer que a_{n+1} est un entier naturel.

Or $a_{n+1} = 16a_n - 3$ donc a_{n+1} est un entier.

D'autre part
$$a_n = \frac{4^{2n+1}+1}{5} > 0$$
, donc $a_n \ge 1$ et $a_{n+1} > 0$.

On en déduit que a_{n+1} est un entier naturel.

Conclusion

Le principe de récurrence nous permet d'affirmer que pour tout entier naturel n, a_n est un entier naturel.

- **4.a.** d_n est un diviseur commun de a_n et a_{n+1} donc d_n est un diviseur de $a_{n+1}-16a_n=3$. 3 est un nombre premier donc $d_n=1$ ou $d_n=3$.
- **4.b.** $16=3\times 5+1$ donc $16\equiv 1$ (3)

Pour tout entier naturel n:

$$a_{n+1} - 16a_n \equiv a_{n+1} - a_n$$
 (3)

or $a_{n+1}-16a_n=3$ donc $a_{n+1}-16a_n\equiv 0$ (3)

Conséquence

$$a_{n+1} - a_n \equiv 0$$
 (3) \Leftrightarrow $a_{n+1} \equiv a_n$ (3)

4.c. $a_0 = 1$ donc $a_0 \equiv 1$ (3)

On veut démontrer en utilisant un raisonnement par récurrence que pour tout entier naturel n, $a_n \equiv 1 \quad (3)$

Initialisation

$$a_0 \equiv 1$$
 (3)

La propriété est vérifiée pour n=0.

Hérédidité

Pour démontrer que la propriété est héréditaire pour tout entier naturel n, on suppose que $a_n \equiv 1$ (3) et on doit démontrer que $a_{n+1} \equiv 1$ (3)

Or pour tout entier naturel n, $a_{n+1} \equiv a_n$ (3).

Si
$$a_n \equiv 1$$
 (3) alors $a_{n+1} \equiv 1$ (3)

Conclusion

Le principe de récurrence nous permet d'affirmer que pour tout entier naturel n, $a_n \equiv 1$ (3)

4.d. Si $a_n \equiv 1$ (3) alors a_n n'est pas divisible par 3 et 3 n'est pas un diviseur commun de a_n et a_{n+1} . Conséquence

Nouvelle Calédonie novembre 2019

La seule valeur possible pour d_n est 1.

Les nombres a_n et a_{n+1} sont premiers entre eux.

5. Pour tout nombre entier naturel n,

$$b_n = 2^{n+1}(2^n - 1) + 1$$
 et $c_n = 2^{n+1}(2^n + 1) + 1$.

Pour tout entier n supérieur ou égal à 2, on admet que :

$$5a_n = b_n c_n$$
.

5.a. 5 est un nombre premier, divise le produit $b_n c_n$ donc 5 divise l'un des deux facteurs du produit.

Conséquence

5 divise b_n ou 5 divise c_n .

5.b. Si $n \ge 2$ alors $2^{n+1} \ge 2^3 = 8$ et $2^n \ge 4 - 1 = 3$ donc $b_n \ge 8 \times 3 + 1 = 25 > 5$.

De même $2^n+1 \ge 4+1=5$ et $c_n \ge 8 \times 5+1=40+1=41>5$

Conséquence

Pour tout entier supérieur ou égal à 2, $b_n > 5$ et $c_n > 5$.

5.c. Pour tout entier supérieur ou égal à 2 :

Si b_n est divisible par 5 alors $b_n = 5b'_n$ avec b'_n entier naturel strictement supérieur à 1 car $b_n > 5$.

On a $a_n = b'_n \times c_n$ avec $b'_n > 1$ et $c_n > 5$ donc a_n n'est pas un nombre premier.

Si c_n est divisible par 5, on obtient de même $a_n = b_n \times c_n'$ avec b_n entier strictement supérieur à 5

et c'_n entier naturel strictement upérieur à 1. Donc a_n n'est pas un nombre premier.