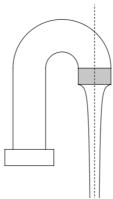


EXERCICE 2 5 points

L'écoulement de l'eau d'un robinet a un débit constant et modéré.



On s'intéresse en particulier à une partie du profil d'écoulement représentée en **annexe** par la courbe C dans un repère orthonormé.

Partie A

On considère que la courbe C donnée en **annexe** est la représentation graphique d'une fonction f dérivable sur l'intervalle]0;1] qui respecte les trois conditions suivantes :

(H):
$$f(1)=0$$
 $f'(1)=0,25$ et $\lim_{x\to 0} f(x)=-\infty$

- 1. La fonction f peut-elle être une fonction polynôme du second degré?Pourquoi?
- 2. Soit g la fonction définie sur l'intervalle]0;1] par $g(x)=k\ln(x)$.
- **2.a.** Déterminer le réel k pour que la fonction g respecte les trois condition (H).
- **2.b.** La courbe représentative de la fonction g coïncide-t-elle avec la courbe C ? Pourquoi ?
- 3. Soit h la fonction définie sr l'intervalle]0;1] par $h(x) = \frac{a}{x^4} + bx$ où a et b sont des réels. Déterminer a et b pour que la fonction h respecte les trois conditions (H).

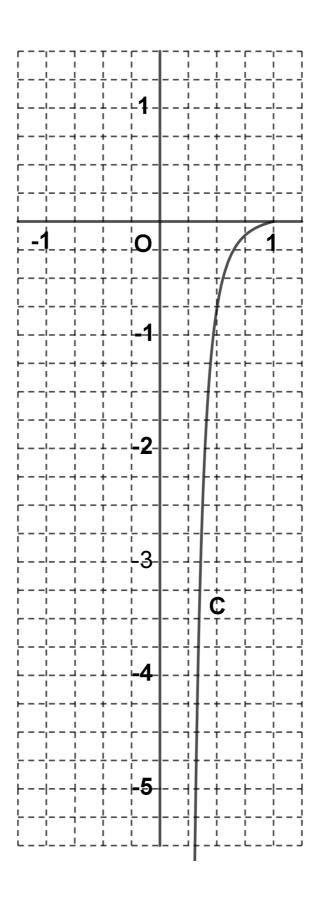
Partie B

On admet dans cette partie que la courbe C est la représentation graphique d'une fonction f continue strictement croissante, définie et dérivable sur l'intervalle]0;1] d'expression :

$$f(x) = \frac{1}{20} \left(x - \frac{1}{x^4} \right)$$

- 1. Justifier que l'équation f(x)=-5 admet sur l'intervalle]0;1] une unique solution qui sera notée α . Déterminée une valeur approchée de α à 10^{-2} près.
- 2. On admet que le volume d'eau en cm³, contenu dans les 5 premiers centimètres de l'écoulement est donné par la formule : $V = \int_{\alpha}^{1} \pi \, x^2 f'(x) dx$.
- **2.a.** Soit u la fonction dérivable sur]0;1] définie par $u(x) = \frac{1}{2x^2}$. Déterminer sa fonction dérivée.
- **2.b.** Déterminer la valeur exacte de V. En utilisant la valeur la valeur approchée de α obtenue à la question 1, donner une valeur approchée de V.

ANNEXE



CORRECTION

Partie A

1. Si f est une fonction polynôme du second degré alors pour tout nombre réel x de l'intervalle [0;1] on a $f(x)=ax^2+bx+c$ avec a nombre réel non nul et b et c sont des nombres réels.

 $\lim_{x\to\infty} f(x) = c \neq -\infty$ donc f ne vérifie pas l'une au moins des 3 conditions.

2.a. g est définie sur]0;1] par $g(x)=k \ln(x)$

$$g(1)=k\ln(1)=0$$

$$g'(x) = k \times \frac{1}{x} \qquad g'(1) = k \qquad g'(1) = 0.25 \quad \Leftrightarrow \quad k = 0.25 \quad \text{donc} \quad g(x) = 0.25 \ln(x)$$

$$\lim_{x \to 0} \ln(x) = -\infty \qquad \text{donc} \qquad \lim_{x \to 0} g(x) = -\infty$$

$$\lim_{x \to 0} \ln(x) = -\infty \quad \text{donc} \quad \lim_{x \to 0} g(x) = -\infty$$

La fonction g définie sur]0;1] par $g(x)=0,25\ln(x)$ vérifie (H).

2.b. $g(0.25)=0.25\ln(0.25)=-0.35$ à 10^{-2} près.

La courbe représentative de la fonction f donnée en annexe ne passe par le point de coordonnées (0,25;-0,35) car l'ordonnée du point de C d'abscisse 0,25 est inférieure à -5.

Conséquence

La courbe représentative de g ne coïncide pas avec C.

3. h est définie sur]0;1] par $h(x) = \frac{a}{x^4} + bx$.

$$h(1)=a+b$$
 $h(1)=0 \Leftrightarrow a+b=0 \Leftrightarrow b=-a$

$$h'(x) = \frac{-4 a x^3}{x^8} + b = \frac{-4 a}{x^5} + b$$

$$h'(1) = -4a + b = -5a$$
 $h'(1) = 0.25 \Leftrightarrow -5a = 0.25 \Leftrightarrow a = \frac{0.25}{-5} = -0.05$

$$b=-a=0.05$$
 donc $h(x)=\frac{-0.05}{x^4}+0.05x$

$$\lim_{x \to 0} -0.5 x = 0 \qquad \lim_{x \to 0} \frac{-0.05}{x^4} = -\infty \qquad \text{donc} \qquad \lim_{x \to 0} h(x) = -\infty$$

Conclusion

h vérifie (H)

Partie B

$$f(x) = \frac{1}{20} \left(x - \frac{1}{x^4} \right)$$

$$\frac{1}{20}$$
 = 0.05 donc $f(x) = h(x)$

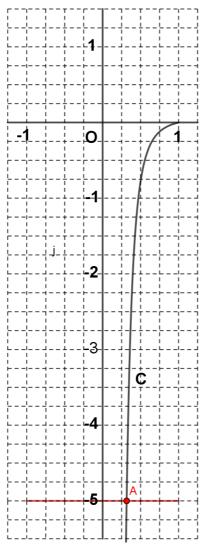
1. Pour tout nombre réel x de l'intervalle [0:1]

$$f'(x) = \frac{1}{20} \left(1 + \frac{1}{x^5} \right) > 0$$

f est continue et strictement croissante sur [0;1] à valeurs dans l'intervalle $]-\infty;0]$, -5 appartient à cet intervalle.

Le théorème des valeurs intermédiaires, nous permet d'affirmer qu'il existe un nombre réel unique α appartenant à [0;1] tel que $f(\alpha)=-5$.

 α est l'abscisse du point A point d'intersection de C et de la droite d'équation y=-5.



En utilisant la calculatrice on obtient :

f (0,32)=-4,75 et f (0,31)=-5,40 0,31<
$$\alpha$$
<0,32
 α = 0,32 à 10⁻² près/

2.
$$\frac{1}{2x^{2}} = \frac{1}{2} \times \frac{1}{x^{2}}$$
$$\left(\frac{1}{2x^{2}}\right)' = \frac{1}{2} \times \left(\frac{-2x}{x^{4}}\right) = -\frac{1}{x^{3}}$$
$$f(x) = \frac{1}{20}x - \frac{1}{20} \times \frac{1}{x^{4}}$$
$$f'(x) = \frac{1}{20} + \frac{1}{20} \times \frac{4x^{3}}{x^{8}} = \frac{1}{20} + \frac{1}{5} \times \frac{1}{x^{5}}$$
$$x^{2} f'(x) = \frac{1}{20}x^{2} + \frac{1}{5} \times \frac{1}{x^{3}}$$

Soit 1 la fonction définie sur]0;1] par $1(x)=\pi x^2 f'(x)$ alors la fonction L définie sur]0;1] par :

$$L(x) = \pi \left(\frac{x^3}{60} - \frac{1}{10 x^2}\right)$$
 est une primitive de 1.

$$V = \int_{\alpha}^{1} \pi x^{2} f'(x) dx = L(1) - L(\alpha) = \pi \left(\frac{1}{60} - \frac{1}{10} - \frac{\alpha^{3}}{60} + \frac{1}{10 \alpha^{2}} \right) \text{ cm}^{3}$$

$$V = 2.79 \text{ cm}^{3}$$