

Exercice 2

commun à tous les candidats

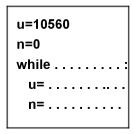
5 points

Au 1^{er} janvier 2020, la centrale solaire de Big Sun possédait 10560 panneaux solaires. On observe, chaque année, que 2 % des panneaux se sont détériorés et nécessitent d'être retirés tandis que 250 nouveaux panneau solaires sont installés.

Partie A – Modélisation à l'aide d'une suite

On modélise l'évolution du nnombre de panneaux solaires par la suite (u_n) définie par $u_0 = 10560$ et pour tout entier naturel n, $u_{n+1} = 0.98 u_n + 250$, où u_n est le nombre de panneaux solaires au 1^{er} janvier 2020+n.

- 1.a. Expliquer en quoi cette modélisation correspond à la situation étudiée.
- **1.b.** On souhaite savoir au bout de combien d'années le nombre de panneaux solaires sera strictement supérieur à 12000. À l'aide de la calculatrice, donner la réponse à ce problème.
- **1.c.** Recopier et compléter le programme Python ci-dessous de sorte que la valeur cherchée à la question précédente soit stockée dans la variable n à l'issue de l'exécution de ce dernier.



- 2. Démontrer par récurrence que, pour tout entier naturel n, on a $u_n \le 12500$.
- 3. Démontrer que la suite (u_n) est croissante.
- 4. En déduire que la suite (u_n) converge. Il n'est pas demandé, ici, de calculer sa limite.
- 5. On définit la suite (v_n) par v_n = u_n -12500, pour tout entier naturel n.
- **5.a.** Démontrer que la suite (v_n) est une suite géométrique de raison 0,98 dont on précisera le premier terme.
- **5.b.** Exprimer, pour tout entier naturel n, V_n en fonction de n.
- **5.c.** En déduire, pour tout entier naturel, u_n en fonction de n.
- **5.d.** Déterminer la limite de la suite (u_n) . Interpréter ce résultat dans le contexte du modèle.

Partie B - Modélisation à l'aide d'une fonction

Une modélisation plus précise a permis d'estimer le nombre de panneaux solaires de la centrale à l'aide de la fonction f définie pour tout $x \in [0; +\infty[$ par $f(x)=12500-500 e^{-0.02 x+1.4}$, où x représente le nombre d'années écoulées depuis le 1^{er} janvier 2020.

- 1. Étudier le sens de variation de la fonction f.
- 2. Déterminer la limite de la fonction f en $+\infty$.
- **3.** En utilisant ce modèle, déterminer au bout de combien d'années le nombre de panneaux solaires dépassera 12000.

CORRECTION

Partie A

1.a. u_n est le nombre de panneaux solaires au 1^{er} janvier 2020+n

 u_{n+1} est le nombre de panneaux solaires au 1^{er} janvier 2020+n+1.

Chaque année, 2 % des panneaux solaires sont détériorés et on les retirent.

Pour l'année 2020+n, $\frac{2}{100}u_n = 0.02u_n$ panneaux solaires sont détériorés.

Chaque année, 250 nouveaux panneaux solaires sont installés.

Donc $u_{n+1} = u_n - 0.02 u_n + 250 = 0.98 u_n + 250$.

1.b. Pour pouvoir répondre à la question, il suffit d'utiliser le tableur de la calculatrice.

On érit en A1: n, en B1: u_n , en A2: 0, en B2: 10560, en A3: =A2+1, en B3: =0.98*B2+250. Puis on étire vers le bas les colonnes A et B, pour obtenir dans la colonne B un résultat strictement supérieur à 12000.

On obtient (on donne partiellement les résultats du tableur), n=68 et $u_{68}>12000$.

	Α	В
1	n	u _n
3	0	10560
3	1	10598.8
4	2	10636.824
5	3	10674.08752
6	4	10710.60577
7	5	10746.39365
8	6	10781.46578
9	7	10815.83647
10	8	10849.51974
11	9	10882.52934
61	59	11910.96623
62	60	11922.7469
63	61	11934.29197
64	62	11945.60613
65	63	11956.694
66	64	11967.56012
67	65	11978.20892
68	66	11988.64474
69	67	11998.87185
70	68	12008.89441

1.c. Programme Python demandé.

Si on exécute le programme, on obtient n=68.

2. On veut démontrer en utilisant un raisonnement par récurrence que pour tout entier naturel n, on a : $u_n \le 12500$.

Initialisation

 $u_0 = 10560 \le 12500$ donc la propriété est vérifiée pour n=0.

Hérédité

Pour démontrer que la propriété est héréditaire, pour tout entier naturel n, on suppose que $u_n \le 12500$ et on doit démontrer que $u_{n+1} \le 12500$.

Spécialité Centres étrangers 2

Si $u_n \le 12500$ alors $0.98 \times u_n \le 12500 \times 0.98$ soit $0.98 u_n \le 12250$ et $0.98 u_n + 250 \le 12250 + 250$ soit $u_{n+1} \le 12500$.

Conclusion

Le principe de récurrence nous permet d'affirmer que, pour tout entier naturel n, on a : $u_n \le 12500$.

3. Pour tout entier naturel n, $u_{n+1} - u_n = 0.98_n u + 12500 - u_n = 12500 - 0.02 u_n$. $u_n \le 12500 \quad \text{donc} \quad -0.02 \times u_n \ge 12500 \times (-0.02) \quad \Leftrightarrow \quad -0.02 u_n \ge -250 u_{n+1} - u_n \ge 12500 - 250 > 0$.

La suite (u_n) est strictement croissante.

- 4. La suite (u_n) est strictement croissante et majorée par 12500 donc la suite (u_n) est convergente.
- 5. Pour tout entier naturel n, $v_n = u_n 12500 \Leftrightarrow u_n = 12500 + v_n$.
- **5.a.** Pour tout entier naturel n:

$$\begin{array}{l} v_{n+1} \! = \! u_{n+1} - 12500 \! = \! 0.98 \, u_n + 250 - 12500 \! = \! 0.98 \, \times \! \big(v_n \! + \! 12500 \big) - 12250 = \ 0.98 \, v_n + 12250 - 12250 \\ v_{n+1} \! = \! 0.98 \, v_n \, . \end{array}$$

 (v_n) est la suite géométrique de raison q=0,98 et de 1^{er} terme $v_0=u_0-12500=10560-12500=-1940$.

- **5.b.** Pour tout entier naturel n, $v_n = v_0 \times q^n = -1940 \times 0.98^n$.
- **5.c.** Pour tout entier naturel n, $u_n = v_n + 12500 = 12500 1940 \times 0.98^n$.
- **5.d.** 0 < 0.98 < 1 donc $\lim_{n \to +\infty} 0.98^n = 0$ et $\lim_{n \to +\infty} u_n = 12500$.

Partie B

- 1. $x \in [0; +\infty[$ $f(x) = 12500 500 e^{-0.02 x + 1.4}$ $(e^{u})' = u' e^{u}$ donc $(e^{-0.02 x + 1.4})' = -0.02 e^{-0.02 x + 1.4}$ $f'(x) = -500 \times (-0.02 e^{-0.02 x + 1.4}) = 10 e^{-0.02 x + 1.4} > 0$ f est strictement croissante sur $[0; +\infty[$.
- 2. $\lim_{x \to +\infty} (-0.02 x + 1.4) = -\infty$ donc $\lim_{x \to +\infty} e^{-0.02 x + 1.4} = 0$ et $\lim_{x \to +\infty} f(x) = 12500$.
- 3. $f(x) > 12000 \Leftrightarrow 12500 500 e^{-0.02x + 1.4} > 12000 \Leftrightarrow 500 > 500 e^{-0.02x + 1.4} \Leftrightarrow 1 > e^{-0.02x + 1.4} \Leftrightarrow 0 > -0.02x + 1.4 \Leftrightarrow 0.02x > 1.4 \Leftrightarrow 2x > 140 \Leftrightarrow x > 70$; Le nombre de panneaux solaires dépassera 12000au bout de 71 années.