

Exercice A

au choix du candidat

5 points

Le candidat doit traiter un seul des deux exercices A et B.

Il indique sur sa copie l'exercice choisi : exercice A ou exercice B.

Pour éclairer son choix, les principaux domaines abordés par chaque exercice sont indiqués dans un encadré.

Exercice A

Principaux domaines abordés:

Suites numériques - raisonnement par récurrence;

On considère les suites (u_n) et (v_n) définies par :

$$u_0 = 16$$
; $v_0 = 5$ et pour tout entier naturel n :
$$\begin{cases} u_{n+1} = \frac{3u_n + 2v_n}{5} \\ v_{n+1} = \frac{u_n + v_n}{2} \end{cases}$$

- 1. Calculer u_1 et v_1 .et
- 2. On considère la suite (w_n) définie pour tout entier naturel n par : $w_n = u_n v_n$.
- **2.a.** Démontrer que la suite (w_n) est géométrique de raison 0,1. En déduire, pour tout entier naturel n, l'expression de w_n en fonction de n.
- **2.b.** Préciser le signe de la suite (w_n) et la limite de cette suite.
- **3.a.** Démontrer que, pour tout entier naturel n, on a : $u_{n+1} u_n = -0.4 w_n$.
- **3.b.** En déduire que la suite (u_n) est décroissante.

On peut démontrer de la même manière que la suite (v_n) est croissante.

On admet ce résultat, et on remarque qu'on a alors : pour tout entier naturel $n, v_n \ge v_0 = 5$.

3.c. Démontrer par récurrence que pour tout entier naturel n, on $a:u_n\geqslant 5$. En déduire que la suite (u_n) est convergente. On appelle L la limite de (u_n) .

On peut démontrer de la même manière que la suite (v_n) est convergente. On admet ce résultat , et on appelle L' la limite de (v_n) .

- **4.a.** Démontrer que L=L'.
- **4.b.** On considère la suite (c_n) définie pour tout entier naturel n par : $c_n = 5 u_n + 4 v_n$. Démontrer que la suite (c_n) est constante, c'est-à-dire que pour tout entier naturel n, on a : $c_{n+1} = c_n$. En déduire que, pour tout entier naturel n, $c_n = 100$.
- **4.c.** Déterminer la valeur commune des limites L et L'.

CORRECTION

1.
$$u_1 = \frac{3u_0 + 2v_0}{5} = \frac{3 \times 16 + 2 \times 5}{5} = \frac{58}{5} = 11,6$$
 $v_1 = \frac{u_0 + v_0}{2} = \frac{16 + 5}{2} = \frac{21}{2} = 10,5$

2. Pour tout entier naturel n:

$$w_{n+1} = u_{n+1} - v_{n+1} = \frac{3 u_n + 2 v_n}{5} - \frac{u_n + v_n}{2} = \frac{2 (3 u_n + 2 v_n) - 5 (u_n + v_n)}{5 \times 2} = \frac{6 u_n + 4 v_n - 5 u_n - 5 v_n}{10} = \frac{u_n - v_n}{10}$$

$$w_{n+1} = \frac{1}{10} (u_n - v_n) = 0,1 w_n$$

donc (w_n) est une suite géométrique de raison q=0,1.

$$w_0 = u_0 - v_0 = 16 - 5 = 11$$

Pour tout entier naturel n: $w_n = w_0 \times q^n = 11 \times 0, 1^n$.

 $0,1^{n}>0$ donc $W_{n}>0$ et la suite (W_{n}) est positive.

$$0 \le 0,1 < 1$$
 donc $\lim_{n \to +\infty} 0,1^n = 0$ et $\lim_{n \to +\infty} w_n = 0$.

3.a. Pour tout entier naturel n:

$$u_{n+1} - u_n = \frac{3 u_n + 2 v_n}{5} - u_n = \frac{3 u_n + 2 v_n - 5 u_n}{5} = \frac{-2 u_n + 2 v_n}{5} = -\frac{2}{5} (u_n - v_n) = -0.4 w_n$$

3.b. Pour tout entier naturel n:

$$w_n > 0$$
 et $-0.4 w_n < 0$ donc $u_{n+1} - u_n < 0$. La suite (u_n) est décroissante.

4.a. On veut démontrer, en utilisant un raisonnement par récurrence, que pour tout entier naturel n, on a: $u_n > 5$.

<u>Initialisation</u>

$$u_0 = 16 \ge 5$$
, la propriété est vérifiée pour $n = 0$.

Hérédité

Pour démontrer que la propriété est héréditaire pour tout entier naturel n, on suppose que $u_n \ge 5$ et on doit démontrer que $u_{n+1} \ge 5$.

Or
$$u_{n+1} = \frac{3 u_n + 2 v_n}{5}$$

$$u_n \ge 5$$
 donc $3u_n \ge 15$ et $v_n \ge 5$ donc $2v_n \ge 10$

Conséquence :
$$u_{n+1} \ge \frac{15+10}{5} = \frac{25}{5} = 5$$

Conclusion

Le principe de récurrence nous permet d'affirmer que, pour tout entier naturel $\,n$, on $\,a:\,u_n\!\geqslant\!5\,$.

 (u_n) est une suite décroissante et minorée par $\, 5 \, donc \, (u_n)$ est une suite convergente et on note $\lim_{n \to +\infty} u_n = L$

4.a. $\lim_{n \to +\infty} v_n = L'$.

Pour tout entier naturel n, on a:
$$u_n - v_n = w_n$$

$$\lim_{n \to +\infty} (u_n - v_n) = L - L' \text{ et } \lim_{n \to +\infty} w_n = 0 \text{ donc } L-L'=0 \text{ et } L=L'.$$

4.b. Pour tout entier naturel $n : c_n = 5 u_n + 4 v_n$.

$$c_{n+1} = 5 \times \frac{3 u_n + 2 v_n}{5} + 4 \times \frac{u_n + v_n}{2} = 3 u_n + 2 v_n + 2 u_n + 2 v_n = 5 u_n + 4 v_n = c_n$$

La suite (c_n) est une suite constante. $c_n=c_0=5\times 16+4\times 5=80+20=100$.

4.c. Pour tout entier naturel n, $c_n = 5u_n + 4v_n = 100$.

$$\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} v_n = L \qquad \lim_{n \to +\infty} (5u_n + 4v_n) = 5L + 4L = 9L$$

donc
$$9L=100$$
 et $L=\frac{100}{9}$.