Exercice 1 7 points

Arabie saoudite – Bahrein – Chypre – Éthiopie – Grèce – Israël – Jordanie – Koweit – Qatar – Roumanie - Turquie Le sujet propose 4 exercices.

Le candidat choisit 3 exercices parmi les quatre et ne doit traiter que ces 3 exercices.

Chaque exercice est noté sur 7 points (le total sera ramené sur 20).

Les traces de recherche, même incomplètes ou infructueuses, seront prises en compte.

Thème: Fonction logarithme

Cet exercice est un questionnaire à choix multiples. Pour chacune des questions suivantes, une seule des quatre questions est exacte. Les six questions sont indépendantes.

Une réponde incorrecte, une réponse multiple ou l'absence de réponse à une question ne rapporte ni n'enlève de point. Pour répondre indiquer sur la copie le numéro de la question et la lettre de la réponse choisie. Aucune justification n'est demandée.

- 1. On considère la fonction f définie pour tout réel x par $f(x) = \ln(1+x^2)$. Sur \mathbb{R} , l'équation f(x)=2022.
- a. n'admet aucune solution

- **b.** admet exactement une solution
- c. admet exactement deux solutions
- **d.** admet une infinité de solutions
- 2. Soit la fonction g définie pour tout réel x strictement positif par : $g(x)=x \ln(x)-x^2$. On note \mathcal{C}_f sa courbe représentative dans un repère du plan.
- **a.** la fonction g est convexe sur $]0;+\infty[$
- **b.** la fonction g est concave sur $]0;+\infty[$
- c. la courbe \mathcal{C}_{g} admet exactement un point d'inflexion sur $]0;+\infty[$
- **d.** la courbe \mathcal{C}_{g} admet exactement deux pints d'inflexion sur $]0;+\infty[$
- 3. On considère la fonction f définie sur]-1;1[par $f(x) = \frac{x}{1-x^2}$.

Une primitive de la fonction f est la fonction g définie sur l'intervalle]-1;1[par :

a.
$$g(x) = \frac{1}{2} \ln(1 - x^2)$$

b.
$$g(x) = \frac{1+x^2}{(1-x^2)^2}$$

c.
$$g(x) = \frac{x^2}{2\left(x - \frac{x^3}{3}\right)^2}$$

d.
$$g(x) = \frac{x^2}{2} \ln(1 - x^2)$$

- **4.** La fonction $x \rightarrow \ln(-x^2 x + 6)$ est définie sur :
- **a.**]-3;2[

b. $]-\infty;6[$ **d.** $]2;+\infty[$

c. $]0;+\infty[$

- 5. On considère la fonction f définie sur $]0.5;+\infty[$ par : $f(x)=x^2-4x+3\ln(2x-1)$ Une équation de la tangente à la courbe représentative de f au point d'abscisse 1 est :
- **a.** y = 4x 7

b. y = 2x - 4

c. y = -3(x-1)+4

- **d.** v = 2x 4
- **6.** L'ensemble des solutions dans \mathbb{R} de l'inéquation $\ln(x+3) < 2\ln(x+1)$ est :
- **a.** $S =]-\infty; -2[\cup]1; +\infty[$

b. $S =]1; +\infty[$

c. $S = \emptyset$

d. S =]-1;1[

CORRECTION

1. Réponse : c

Preuve non demandée

$$f(x) = 2022 \Leftrightarrow \ln(1+x^2) = 2022 \Leftrightarrow 1+x^2 = e^{2022} \Leftrightarrow x^2 = e^{2022} - 1$$

$$\Leftrightarrow (x = \sqrt{e^{2022} - 1} \text{ ou } x = -\sqrt{e^{2022} - 1})$$

2. Réponse : c

Preuve non demandée

$$x \in]0; +\infty[g(x) = x \ln(x) - x^{2}$$

$$g'(x) = 1 \times \ln(x) + x \times \frac{1}{x} - 2x = \ln(x) + 1 - 2x$$

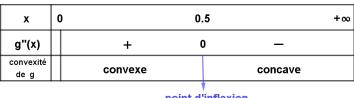
$$g''(x) = \frac{1}{x} - 2 = \frac{1 - 2x}{x}$$

Le signe de g''(x) sur $]0;+\infty[$ est le signe de 1-2x.

$$1-2x=0 \Leftrightarrow 2x=1 \Leftrightarrow x=\frac{1}{2}=0,5$$

$$1-2x>0 \Leftrightarrow 1>2x \Leftrightarrow 0,5>x$$

$$1-2x<0 \Leftrightarrow 1<2x \Leftrightarrow 0.5< x$$



point d'inflexion

3. Réponse : a

Preuve non demandée

$$1-x^{2}>0 \Leftrightarrow x \in]-1;1[f(x)=\frac{x}{1-x^{2}}=-\frac{1}{2}\times\frac{-2x}{1-x^{2}}=-\frac{1}{2}\times\frac{u'(x)}{u(x)}g(x)=-\frac{1}{2}\ln(1-x^{2}) g \text{ est une primitive de f sur }]-1;1[$$

4. Réponse : a

Preuve non demandée

x appartient à l'ensemble de définition de la fonction si et seulement si : $-x^2 - x + 6 > 0$.

$$\Delta = (-1)^{2} - 4 \times (-1) + 6 = 1 + 24 = 25 = 5^{2}$$

$$x_{1} = \frac{1 - 5}{2 \times (-1)} = 2$$

$$x_{2} = \frac{1 + 5}{2 \times (-1)} = -3$$

Le coefficient de x^2 est négatif donc!

$$-x^2 - x + 6 > 0 \Leftrightarrow x \in]-3;2[$$

5. Réponse : a

Preuve non demandée

$$\begin{array}{ll}
 \frac{1}{x \in \mathbb{N}} & \text{fr}(x) = x^2 - 4x + 3\ln(2x - 1) \\
 f(1) = 1 - 4 + 3\ln(1) = -3 \\
 f'(x) = 2x - 4 + 3 \times \frac{2}{2x - 1} = 2x - 4 + \frac{6}{2x - 1}
\end{array}$$

$$f'(1) = -2 + \frac{6}{1} = 4$$

Équation de la tangente au point d'abscisse 1 :

$$y+3=4(x-1) \Leftrightarrow y=4x-7$$

6. Réponse : b

Preuve non demandée

$$\ln(x+3) < 2\ln(x+1)$$

Ensemble de définition

$$\begin{cases} x+3>0 \\ x+1>0 \end{cases} \Leftrightarrow \begin{cases} x>-3 \\ x>-1 \end{cases} \Leftrightarrow \{x>-1 \\ \ln(x+3)<2\ln(x+1) \end{cases} \Leftrightarrow \begin{cases} x>-1 \\ \ln(x+3)<\ln(x+1)^2 \end{cases} \Leftrightarrow \begin{cases} x>-1 \\ x+3<(x+1)^2 \end{cases}$$

$$x+3<(x+1)^2 \Leftrightarrow x+3$$

$$T(x) = x^2 + x - 2$$

$$\Delta = 1^2 - 4 \times (-2) = 1 + 8 = 9 = 3^2$$

$$x_1 = \frac{-1-3}{2 \times 1} = -2$$
 $x_2 = \frac{-1+3}{1 \times 2} = 1$

Le coefficient de x^2 est positif.

х	-∞		-2		1		+∞
T(x)		+	0	_	0	+	

On a aussi x>-1 donc $S=]1;+\infty[$