

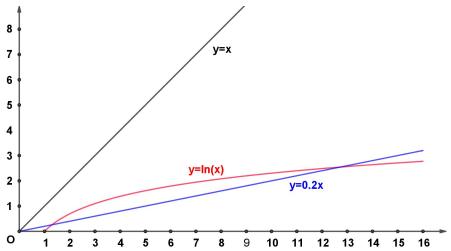
Exercice 3 5 points

Soit k un réel positif.

Le but de l'exercice est de déterminer le nombre de sotutions de l'équation : ln(x)=kx de paramètre k.

1. Conjectures graphiques:

On a représenté, ci-dessous, dans un repère orthogonal, la courbe d'équation $y=\ln(x)$, la droite d'équation y=x ainsi que la droite d'équation y=0.2x.



À partir du graphique, ci -dessus, conjecturer le nombre de solutions de l'équation $\ln(x) = kx$ pour k=1 puis pour k=0,2.

2. Étude du cas : k=1

On considère la fonction f, définie et dérivable sur $]0;+\infty[$ par : $f(x)=\ln(x)-x$.

On note f la fonction dérivée de f.

2.a. Calculer f'(x).

2.b. Étudier le sens de variation de la fonction f sur $]0;+\infty[$.

Dresser le tableau des variations de la fonction f en y faisant figurer la valeur exacte des extremum s'il y en a.

Les limites aux bornes de l'intervalle de définition ne sont pas attendues.

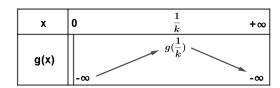
2.c. En déduire le nombre le nombre de solution de l'équation $\ln(x)=x$.

3. Étude du cas général :

k est un nombre réel strictement positif.

On considère la fonction g définie sur $]0;+\infty[$ par $g(x)=\ln(x)-kx$.

On admet que le tableau de variations de la fonction g est le suivant :



3.a. Donner en fonction du signe de $g\left(\frac{1}{k}\right)$ le nombre de solutions de l'équation g(x)=0.

3.b. Calculer $g\left(\frac{1}{k}\right)$ en fonction de k.

- 3.c. Montrer que $g\left(\frac{1}{k}\right) > 0$ équivaut à $\ln(k) < -1$.
- **3.d.** Déterminer l'ensemble des valeurs de k pour lesquelles l'équation $\ln(x)=kx$ possède exactement deux solutions.
- **3.e.** Donner, selon les valeurs de k, le nombre de solutions de l'équation $\ln(x) = kx$.

CORRECTION

1. La courbe représentative de ln et la droite d'équation y=x n'ont aucun point d'intersection. Donc l'équation $\ln(x)=x$ n'admet aucune solution.

La courbe représentative de ln et la droite d'équation y=0.2x ont deux points d'intersection. Donc l'équation $\ln(x)=0.2x$ admet deux solutions.

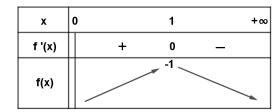
- **2.a.** f est dérivable sur $]0;+\infty[$ et $f'(x)=\frac{1}{x}-1=\frac{1-x}{x}$.
- **2.b.** Le signe de f'(x) sur $]0;+\infty[$ est le signe de (1-x).

Si $0 < x \le 1$ alors $1 - x \ge 0$ et f est croissante sur]0;1].

Si $1 \le x$ alors $1-x \le 0$ et f est décroissante sur $[1; +\infty[$.

f(1) = -1

Tableau de variations de f



- **2.c.** -1 est un maximum absolu de f sur $]0;+\infty[$. Pour tout nombre réel x de l'intervalle $]0;+\infty[$, $f(x) \le -1 < 0$ donc l'équation f(x) = 0 \Leftrightarrow $\ln(x) = x$ n'admet pas de solution.
- **3.a.** Si $g\left(\frac{1}{k}\right) < 0$ alors l'équation g(x) = 0 n'admet pas de solution.
 - Si $g(\frac{1}{k}) = 0$ alors l'équation g(x) = 0 admet une unique solution : $\frac{1}{k}$.
 - Si $g\left(\frac{1}{k}\right)>0$ alors le théorème des valeurs intermédiaires nous permet d'affirmer que l'équation

g(x)=0 admet deux solutions l'une dans l'intervalle $\left]0;\frac{1}{k}\right[$ l'autre dans l'intervalle $\left]\frac{1}{k};+\infty\right[$.

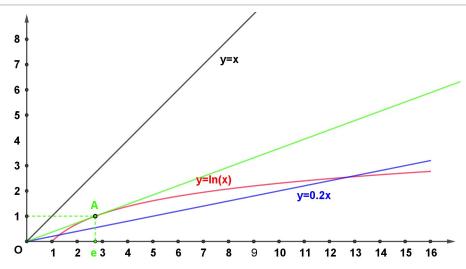
- **3.b.** $g\left(\frac{1}{k}\right) = \ln\left(\frac{1}{k}\right) k \times \frac{1}{k} = -\ln(k) 1$
- 3.c. $g\left(\frac{1}{k}\right) > 0 \Leftrightarrow -\ln(k) 1 > 0 \Leftrightarrow -1 > \ln(k)$.
- 3.d. L'équation $\ln(x) = kx$ possède exactement deux solutions si et seulement si $-1 > \ln(x) \Leftrightarrow \ln\left(\frac{1}{e}\right) > \ln(k) \Leftrightarrow \frac{1}{e} > k$.

L'ensemble demandé est : $\left]0; \frac{1}{e}\right[$.

- 3.e. Si $0 < k < \frac{1}{e}$ alors l'équation possède exactement deux solutions.
 - Si $k = \frac{1}{e}$ alors l'équation $\ln(x) = \frac{1}{e}x$ admet une solution unique : e.

On peut vérifier que la droite d'équation $y = \frac{1}{e}x$ est tangente à la courbe représentative de ln au point A(e;1).

On joint une figure non demandée.



Si $k > \frac{1}{e}$ l'équation n'admet pas de solution.