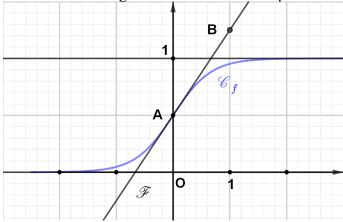
Exercice 1 5 points

On considère la fonction f définie sur \mathbb{R} par : $f(x) = \frac{1}{1 + e^{-3x}}$.

On note \mathcal{C}_{f} sa courbe représentative dans un repère orthogonal du plan.

On nomme A le point de coordonnées $\left(0; \frac{1}{2}\right)$ et B le point de coordonnées $\left(1; \frac{5}{4}\right)$.

On a tracé ci-dessous la courbe \mathscr{C}_f et \mathscr{F} la tangente à la courbe \mathscr{C}_f au point d'abscisses 0.



Partie A: lectures graphiques

Dans cette partie, les résultats sont obtenus par lecture graphique. Aucune justification n'est demandée.

- 1. Déterminer l'équation réduite de la tangente \mathcal{F} .
- 2. Donner les intervalles sur lesquels la fonction f semble convexe ou concave.

Partie B: étude de la fonction

- 1. On admet que la fonction f est dérivable sur R. Déterminer l'expression de sa fonction dérivée f'.
- 2. Justifier que la fonction est strictement croissante sur \mathbb{R} .
- 3.a. Déterminer la limite en $+\infty$ de la fonction f.
- **3.b.** Déterminer la limite en $-\infty$ de la fonction f.
- 4. Déterminer la valeur exacte de la solution α de l'équation f(x) = 0.99.

Partie C: tangente et convexité

1. Déterminer par le calcul une équation de la tangente \mathcal{F} à la courbe \mathcal{C}_f au point d'abscisse 0. On admet que la fonction f est deux fois dérivable sur \mathbb{R} .

On note f' la fonction dérivée seconde de la fonction f.

On admet que f'' est définie sur \mathbb{R} par : $f''(x) = \frac{9e^{-3x}(e^{-3x}-1)}{(1+e^{-3x})^3}$.

- 2. Étudier le signe de la fonction $f^{''}$ sur \mathbb{R} .
- **3.a.** Indiquer, en justifiant, sur quel(s) intervalle(s) la fonction est convexe.
- **3.b.** Que représente le point A pour la courbe $\mathscr{C}_{\mathfrak{f}}$?
- 3.c. En déduire la position relative de la tangente ${\mathscr F}$ et la courbe ${\mathscr C}_{\rm f}$. Justifier la réponse.

Spécialité Centres étrangers 2-2

CORRECTION

Partie A: lectures graphiques

1. L'ordonnée à l'origine de \mathcal{F} est égale à l'ordonnée du point A, soit $\frac{1}{2}$.

Le coefficient directeur de \mathscr{F} est égale à : $\frac{y_B - y_A}{x_B - x_A} = \frac{\frac{5}{4} - \frac{1}{2}}{1 - 0} = \frac{3}{4}$.

$$\mathcal{F}\colon \ y = \frac{3}{4}x + \frac{1}{2}$$

2. f semble convexe sur $]-\infty;0]$ et concave sur $[0;+\infty[$.

Partie B: étude de la fonction

- 1. $f(x) = \frac{1}{1 + e^{-3x}} \qquad \left(\frac{1}{u}\right) = \frac{-u'}{u^2}$ $\mathbf{u}(x) = 1 + e^{-3x} \quad \mathbf{u}'(x) = (e^{-3x})' = -3e^{-3x}$ $\mathbf{f}'(x) = \frac{-3e^{-3x}}{(1 + e^{-3x})^2}$
- 2. Pour tout nombre réel x, $e^{-3x}>0$ donc f'(x)>0.

f est une fonction strictement croissante sur \mathbb{R} .

 $\lim_{x \to +\infty} (-3x) = -\infty \text{ et } \lim_{X \to -\infty} e^{X} = 0 \text{ donc } \lim_{x \to +\infty} e^{-3x} = 0 \text{ et } \lim_{x \to +\infty} f(x) = \frac{1}{1+0} = 1.$

La droite d'équation y=1 est une asymptote horizontale à \mathscr{C}_f en $+\infty$.

3.b. $\lim_{x \to -\infty} (-3x) = +\infty$ et $\lim_{x \to +\infty} e^X = +\infty$ donc $\lim_{x \to -\infty} e^{-3x} = +\infty$ et $\lim_{x \to -\infty} f(x) = 0$.

La droite d'équation y=0 (l'axe des abscisses) est asymptote horizontale à \mathscr{C}_f en $-\infty$.

- **4.** $f(x) = 0.99 \Leftrightarrow \frac{1}{1 + e^{-3x}} = 0.99 \Leftrightarrow 1 = 0.99 \times (1 + e^{-3x}) \Leftrightarrow 0.01 = 0.99 e^{-3x} \Leftrightarrow \frac{0.01}{0.99} = e^{-3x}$
 - $\Leftrightarrow \frac{1}{99} = e^{-3x}$ (la fonction ln est strictement croissante sur]0;+ ∞ [) $\Leftrightarrow \ln\left(\frac{1}{99}\right) = \ln\left(e^{-3x}\right)$
 - $\Leftrightarrow -\ln(99) = -3x \Leftrightarrow \frac{1}{3}\ln(99) = x \text{ donc } \alpha = \frac{1}{3}\ln(99).$

Partie C: tangente et convexité

1. $f'(0) = \frac{3e^0}{(1+e^0)^2} = \frac{3}{4}$

 $\mathcal{F}: \ y - y_A = f'(0)(x - x_A)$ $\mathcal{F}: \ y - \frac{1}{2} = \frac{3}{4}(x - 0)$ $\mathcal{F}: \ y = \frac{3}{4}x + \frac{1}{2}$

2. Pour tout nombre réel $x: \frac{9e^{-3x}}{(1+e^{-3x})^3} > 0$ donc le signe de f''(x) sur \mathbb{R} est le signe de $(e^{-3x}-1)$.

 $e^{-3x}-1=0 \Leftrightarrow e^{-3x}=1 \Leftrightarrow -3x=\ln(1)=0 \Leftrightarrow x=0$ $e^{-3x}-1>0 \Leftrightarrow e^{-3x}>1 \Leftrightarrow -3x>\ln(1)=0$ (car lu est strictement croissante sur]0;+ ∞ [) $\Leftrightarrow x < 0$. $e^{-3x}-1<0 \Leftrightarrow x>0$

On donne le signe de f''(x) sous la forme d'un tableau.

x	-∞	0	+∞
f "(x)	+	0	_

Spécialité Centres étrangers 2-2

- **3.a.** f est convexe sur $]-\infty;0]$ car $f''(x) \ge 0$ sur $]-\infty;0]$ et $f''(x) \le 0$ sur $[0;+\infty[$.
- **3.b.** f'' s'annule en 0 en changeant de signe donc le point A d'abscisse 0 est un point d'inflexion de la courbe \mathscr{C}_f .
- **3.c.** La courbe \mathscr{C}_f est convexe sur $]-\infty;0]$ donc \mathscr{C}_f est au dessus de la tangente \mathscr{F} à \mathscr{C}_f au point A sur $]-\infty;0]$.
 - La courbe \mathscr{C}_f est concave sur $[0; +\infty[$ donc \mathscr{C}_f est en dessous de la tangente \mathscr{F} à \mathscr{C}_f au point A sur $[0; +\infty[$.