

Exercice 2 5 points

On considère la fonction f définie sur $]0;+\infty[$ par : $f(x)=3x+2x\ln(x)$.

On admet que f est deux fois dérivable sur $]0;+\infty[$.

On note f sa fonction dérivée et f sa dérivée seconde.

On note \mathcal{C}_f sa courbe représentative dans un repère du plan.

- 1. Déterminer la limite de la fonction f en 0 et en $+\infty$.
- **2.a.** Démontrer que pour tout réel x strictement positif : $f'(x)=1-2\ln(x)$.
- 2.b. Étudier le signe de f et dresser le tableau de variation de la fonction f sur l'intervalle]0;+∞[.
 On fera figurer dans ce tableau les limites ainsi que la valeur exacte de l'extremum.
- **3.a.** Démontrer que l'équation f(x)=0 admet une unique solution sur $]0;+\infty[$. On notera α cette solution.
- **3.b.** En déduire le signe de la fonction f sur $]0;+\infty[$.
- **4.** On considère une primitive quelconque de la fonction f sur l'intervalle $]0;+\infty[$. On la note F. Peut-on affirmer que la fonction F est strictement décroissante sur l'intervalle $\left[e^{\frac{1}{2}};+\infty\right[$? Justifier.
- **5.a.** Étudier la convexité de la fonction f sur $]0;+\infty[$. Quelle est la position de la courbe \mathcal{C}_f par rapport à ses tangentes ?
- **5.b.** Déterminer une équation de la tangente T à la courbe \mathcal{C}_f au point d'abscisse 1.
- **5.c.** Déduire des questions 5.a. et 5;b. Que pour tout réel x strictement positif : $\ln(x) \ge 1 \frac{1}{x}$.

- 1. Pour tout nombre réel x appartenant à l'intervalle $]0;+\infty[$: $f(x)=3x+1-2x\ln(x)$.
- $\lim_{x \to 0} x \ln(x) = 0 \quad \text{et} \quad \lim_{x \to 0} (3x+1) = 1 \quad \text{donc} \quad \lim_{x \to 0} f(x) = 1.$
- . x>0 $f(x)=x\left(3+\frac{1}{x}-2\ln(x)\right)$

$$\lim_{x \to +\infty} \left(\frac{1}{x} \right) = 0 \quad \text{et} \quad \lim_{x \to +\infty} \left(-2\ln(x) \right) = -\infty \quad \text{donc} \quad \lim_{x \to +\infty} f(x) = -\infty.$$

2.a. f est dérivable sur $]0;+\infty[$.

$$(\ln(x))' = \frac{1}{x} \text{ et } (-2x\ln(x))' = -2\ln(x) - 2 \text{ donc } \mathbf{f}'(x) = 3 - 2\ln(x) - 2 = 1 - 2\ln(x).$$

- **2.b.** $1-2\ln(x)=0 \iff 2\ln(x)=1 \iff \ln(x)=\frac{1}{2} \iff x=e^{\frac{1}{2}}$
 - $1-2\ln(x)>0 \Leftrightarrow 1>2\ln(x) \Leftrightarrow \frac{1}{2}>\ln(x) \Leftrightarrow e^{\frac{1}{2}}>x$

car la fonction exponentielle est strictement croissante sur R

- $1-2\ln(x)<0 \Leftrightarrow e^{\frac{1}{2}}$
- $f(e^{\frac{1}{2}}) = 3e^{\frac{1}{2}} + 1 2e^{\frac{1}{2}} \ln(e^{\frac{1}{2}}) = 3e^{\frac{1}{2}} + 1 e^{\frac{1}{2}} = 2e^{\frac{1}{2}} + 1$
- . tableau de variation de

х	0 $e^{rac{1}{2}}$	+∞
f '(x)	+ 0	_
f(x)	$2e^{rac{1}{2}}+1$	-8

3.a. f est croissante sur $\left[0; e^{\frac{1}{2}}\right]$ donc pour tout nombre réel de cet intervalle f(x) > 1 donc l'équation f(x)=0 n'admet pas de solution sur cet intervalle.

f est continue et strictement décroissante sur l'intervalle $\left[e^{\frac{1}{2}};+\infty\right[$ à valeurs dans $\left]-\infty;2e^{\frac{1}{2}}+1\right]$. 0 appartient à cet intervalle.

Le théorème des valeurs intermédiaires nous permet d'affirmer que 0 admet un unique antécédent

par f appartenant à l'intervalle $\left[e^{\frac{1}{2}};+\infty\right]$, on note α cet antécédent.

C'est à dire que l'équation f(x)=0 admet une unique solution α sur $]0;+\infty[$.

3.b. Sur $\left]0; e^{\frac{1}{2}}\right]$ on a f(x) > 1 donc f(x) > 0.

Sur $\left[e^{\frac{1}{2}};\alpha\right]$ la fonction f est décroissante donc : $e^{\frac{1}{2}} \le x < \alpha \Rightarrow f(x) > f(\alpha) = 0$.

Sur $]\alpha;+\infty[$ la fonction f est décroissante donc : $\alpha < x \Rightarrow f(\alpha)=0 > f(x)$.

On donne le signe de la fonction f sous la forme d'un tableau.

х	0	α	+∞
f(x)	+	. 0	_

4. F est une primitive de f sur $]0;+\infty[$.

Pour tout nombre réel de l'intervalle $]0;+\infty[$, F'(x)=f(x)

 α appartient à l'intervalle $\left| e^{\frac{1}{2}}; +\infty \right|$ donc $e^{\frac{1}{2}} < \alpha$.

Sur l'intervalle $\left[e^{\frac{1}{2}};\alpha\right[$, f est positive donc F est croissante sur cet intervalle.

On ne peut pas affirmer que F est strictement décroissante sur l'intervalle $\left[e^{\frac{1}{2}};+\infty\right[$.

5.a. f est deux fois dérivable sur $]0;+\infty[$.

$$f'(x)=1-2\ln(x)$$
 et $f''(x)=-2\times\frac{1}{x}=-\frac{2}{x}<0$

f est concave sur $]0;+\infty[$.

C'est à dire \mathcal{C}_f est en dessous de toutes ses tangentes sur $]0;+\infty[$.

5.b. f(1)=3+1-0=4 f'(1)=1-0=1 donc T: $y-4=1\times(x-1)$

T: y = x + 3

5.c. \mathcal{C}_f est en dessous de T donc pour tout nombre réel x strictement positif : $f(x) \le x+3 \iff 3x+1-2x\ln(x) \le x+3 \iff 3x+1-x-3 \le 2x\ln(x)$

$$\Leftrightarrow 2x-2 \le 2x \ln(x) \Leftrightarrow 1-\frac{1}{x} \le \ln(x) \text{ (car x>0)}.$$