Exercice 3 6 points

On considère la fonction g définie sur l'intervalle [0;1] par $g(x)=2x-x^2$

1. Montrer que la fonction g est strictement croissante sur l'intervalle [0;1] et préciser les valeurs de g(0) et de g(1).

On considère la suite (u_n) définie par $\begin{cases} u_0 = \frac{1}{2} \\ u_{n+1} = g(u_n) \end{cases}$ pour tout entier naturel n.

- 2. Calculer u₁ et u₂
- 3. Démontrer par récurrence que, pour tout entier naturel n, on $a: 0 < u_n < u_{n+1} < 1$.
- **4.** En déduire que la suite (u_n) est convergente.
- 5. Déterminer la limite \mathcal{L} de la suite (u_n) .

On considère la suite (v_n) définie pour tout entier naturel n par $v_n = \ln(1 - u_n)$.

- **6.** Démontrer que la suite (v_n) est une suite géométrique de raison 2 et préciser son premier terme.
- 7. En déduire une expression de V_n en fonction de n.
- 8. En déduire une expression de u_n en fonction de n et trouver la limite déterminée à la question 5.
- 9. Recopier et compléter le script Python ci-dessous afin que celui-ci renvoie le rang à partir duquel la suite dépasse 0,95.

def seuiil(): n=0 u=0.5 while u< 0.95: n= . . . u= . . . return n

Spécialité Amérique du nord 2

CORRECTION

- 1. $g(x)=2x-x^2$ g'(x)=2-2x=2(1-x) $g'(x)=0 \Leftrightarrow x=1$ $g'(x)>0 \Leftrightarrow 1-x>0 \Leftrightarrow x>1$ pour tout nombre réel x appartenant à [0;1[, g'(x)>0 et g'(1)=0 donc g est strictement croissante sur [0;1].g(0)=0 et $g(1)=2\times 1-1^2=1$.
- 2. $u_1 = g\left(\frac{1}{2}\right) = 2 \times \frac{1}{2} \left(\frac{1}{2}\right)^2 = 1 \frac{1}{4} = \frac{3}{4}$. $u_2 = g\left(\frac{3}{4}\right) = 2 \times \frac{3}{4} - \left(\frac{3}{4}\right)^2 = \frac{6}{4} - \frac{9}{16} = \frac{24 - 9}{16} = \frac{15}{16}$.
- 3. On veut démontrer, en utilisant un raisonnement par récurrence que pour tout entier naturel $\,$ n, on a : $0 < u_n < u_{n+1} < 1$

Initialisation

$$u_0 = \frac{1}{2}$$
 et $u_1 = \frac{3}{4}$ donc $0 < u_0 < u_1 < 1$ et la propriété est vérifiée pour $n = 0$.

Hérédité

Pour démontrer que la probabilité est héréditaire pour tout entier naturel $\, n, \, on \, suppose \, que \, 0 < u_n < u_{n+1} < 1 \, et on doit démontrer que \, 0 < u_{n+1} < u_{n+2} < 1 \, .$

Or si $0 < u_n < u_{n+1} < 1$, sachant que g est strictement croissante sur [0;1], alors on a : $g(0) < g(u_n) < g(u_{n+1}) < g(1)$ soit $0 < u_{n+1} < u_{n+2} < 1$.

Conclusion

Le principe de récurrence nous permet d'affirmer que pour tout entier n, on a : $0 < u_n < u_{n+1} < 1$.

- **4.** Pour tout entier naturel n, on a $0 < u_n < u_{n+1} < 1$, alors la suite (u_n) strictement croissante et majorée par 1 donc la suite (u_n) est convergente.
- 5. On note ℓ la limite de la suite (u_n) . On a pour tout entier naturel n, $g(u_n)=u_{n+1}$ donc $g(\ell)=\ell$ et ℓ est une solution de l'équation $g(x)=x \Leftrightarrow 2x-x^2=x \Leftrightarrow x-x^2=0 \Leftrightarrow x(1-x)=0$ $\Leftrightarrow (x=0 \text{ ou } x=1)$
 - (u_n) est une suite strictement croissante donc $u_0 = \frac{1}{2} < 1$ et l=1
- **6.** Pour tout naturel n, $\frac{1}{2} \le u_n \le 1$

or g(x)=1 \Leftrightarrow $1=2x-x^2$ \Leftrightarrow $x^2-2x+1=0$ \Leftrightarrow $(x-1)^2=0$ \Leftrightarrow x=1

donc pour tout entier naturel n, $u_n \ne 1$ et pour tout entier naturel n, $1-u_n > 0$.

La suite (v_n) telle que $v_n = \ln(1-u_n)$ est définie pour tout entier naturel n.

Pour tout entier naturel n:

$$\begin{aligned} \mathbf{v}_{n+1} &= \ln(1 - \mathbf{u}_{n+1}) = \ln(1 - 2\mathbf{u}_n + \mathbf{u}_n^2) = \ln((1 - \mathbf{u}_n)^2) = 2\ln(1 - \mathbf{u}_n) & \text{car } 1 - \mathbf{u}_n > 0 \\ \mathbf{v}_{n+1} &= 2\mathbf{v}_n & \end{aligned}$$

- $(v_n) \ \text{ est la suite géométrique de raison } 2 \ \text{ et de premier terme} \ v_0 = \ln\left(1-u_0\right) = \ln\left(1-\frac{1}{2}\right) = \ln\left(\frac{1}{2}\right) = -\ln\left(2\right) \ .$
- 7. Pour tout entier naturel n

$$v_n = v_0 \times q^n = -\ln(2) \times 2^n$$
.

8.
$$v_n = \ln(1 - u_n) \Leftrightarrow e^{v_n} = 1 - u_n \Leftrightarrow u_n = 1 - e^{v_n} = 1 - e^{-\ln(2)2^n} = 1 - (\frac{1}{2})^{2^n}$$

Spécialité Amérique du nord 2

On peut vérifier pour n=0 et n=1 et n=2
$$u_n = 1 - e^{-\ln(2)2^n}$$

$$\lim_{n \to +\infty} 2^n = +\infty \quad \text{et} \quad -\ln(2) < 0 \quad \text{donc} \quad \lim_{n \to +\infty} (-2\ln(2)2^n) = -\infty \quad \text{et} \quad \lim_{n \to +\infty} (e^{-\ln(2)2^n}) = 0$$

$$\text{conséquence}: \quad \lim_{n \to +\infty} u_n = 1$$

9. Il suffit de compléter les instructions aux lignes 5 et 6

```
ligne 5 n = n+1
ligne 6 u = 2*u-u*u
```

```
def seuiil():

n=0

u=0.5

while u< 0.95:

n= n+1

u= 2*u-u*u

return n
```

Remarque : ligne 6 on peut aussi écrire u=1-(1/2)**(2**n)