

Exercice 2 5 points

Cet exercice contient 5 affirmations.

Pour chaque affirmation, répondre par VRAI ou FAUX, en justifiant la réponse.

Toute absence de justification ou justification incorrecte ne sera pas prise en compte dans la notation.

Partie 1

On considère la suite (u_n) définie par :

 $u_0 = 10$ et pour tout entier naturel n, $u_{n+1} = \frac{1}{3}u_n + 2$.

- 1. Affirmation 1 : La suite (u_n) est décroissante et minorée par 0.
- 2. Affirmation 2: $\lim_{n \to +\infty} u_n = 0$.
- 3. Affirmation 3 : La suite (v_n) définie pour tout entier naturel n par $v_n = u_n 3$ est géométrique

Partie 2

On considère l'équation différentielle (E): $y' = \frac{3}{2}y + 2$ d'inconnue y, fonction définie et dérivable sur \mathbb{R} .

- 1. Affirmation 4 : Il existe une fonction constante solution de l'équation différentielle (E).
- 2. Dans un repère orthonormé $(O; \vec{i}; \vec{j})$, on note \mathcal{C}_f la courbe représentative de la fonction f solution de l'équation différentielle (E) telle que f(0)=0.
- **3. Affirmation 5 :** La tangente au point d'abscisse 1 de \mathscr{C}_f a pour coefficient directeur : $2e^{\frac{3}{2}}$.

CORRECTION

Partie 1

 $u_0 = 10$ pour tout entier naturel n $u_{n+1} = \frac{1}{3}u_n + 2$.

1. Affirmation 1: VRAIE

Preuve

On utilise un raisonnement par récurrence pour démontrer que pour tout entier naturel n, on a : $0 \le u_{n+1} \le u_n$.

Initialisation

$$u_0 = 10$$
, $u_1 = \frac{1}{3} \times 10 + 2 = \frac{16}{3}$ on a $0 \le \frac{16}{3} \le 10$ donc $0 \le u_1 \le u_0$.

La propriété est vérifiée pour n=0.

Hérédité

Pour démontrer que la propriété est héréditaire pour tout entier naturel n, on suppose que $0 \le u_{n+1} \le u_n$ et on doit démontrer que $0 \le u_{n+2} \le u_{n+1}$.

Si
$$0 \le u_{n+1} \le u_n$$
 alors $\frac{1}{3} \times 0 \le \frac{1}{3} u_{n+1} \le \frac{1}{3} u_n$ et $0 + 2 \le \frac{1}{3} u_{n+1} + 2 \le \frac{1}{3} u_n + 2$ soit $2 \le u_{n+2} \le u_{n+1}$ donc $0 \le u_{n+2} \le u_{n+1}$.

Conclusion

Le principe de récurrence nous permet d'affirmer que pour tout entier naturel $\,n,\,$ on a $\,0\!\leq\! u_{n+1}\!\leq\! u_n\,$. Conséquence

La suite (u_n) est décroissante et minorée par 0.

2. Affirmation 2: FAUSSE

Preuve

La suite (u_n) est convergente (suite décroissante et minorée).

Si
$$\lim_{n \to +\infty} u_n = L$$
 alors $\lim_{n \to +\infty} u_{n+1} = L$ donc $L = \frac{1}{3}L + 2 \Leftrightarrow 3L = L + 6 \Leftrightarrow 2L = 6 \Leftrightarrow L = 3$. donc $L \neq 0$.

3. Affirmation 3: VRAIE

<u>Preuve</u>

Pour tout entier naturel
$$n: v_n = u_n - 3 \Leftrightarrow v_n + 3 = u_n$$

donc $v_{n+1} = u_{n+1} - 3 = \frac{1}{3}u_n + 2 - 3 = \frac{1}{3}(v_n + 3) - 1 = \frac{1}{3}v_n + 1 - 1 = \frac{1}{3}v_n$

 (v_n) est une suite géométrique de raison $\frac{1}{3}$.

Partie 2

1. Affirmation 4: VRAIE

Preuve

Soit la fonction g constante égale à k (nombre réel fixé).

Pour tout réel x g(x)=k, on a donc g'(x)=0.

$$g'(x) = \frac{3}{2}g(x) + 2 \Leftrightarrow 0 = \frac{3}{2} \times k + 2 \frac{3}{2}k = -2 \Leftrightarrow k = -\frac{4}{3}$$

L'unique solution constante de l'équation différentielle (E) est la fonction constant égale à $-\frac{4}{3}$.

2. Les solutions sur \mathbb{R} de l'équation différentielle y'=a y+b (avec $a\neq 0$) sont les fonctions définies f_K sur \mathbb{R} par $f_K(x)Ke^{ax}-\frac{b}{a}$ (K constante réelle)..

Les solutions sur \mathbb{R} de (E) sont les fonctions définies sur \mathbb{R} par $f_K(x) = Ke^{\frac{3}{2}x} - \frac{4}{3}$.

Si on veut
$$f_K(0)=0 \Leftrightarrow 0=K-\frac{4}{3} \Leftrightarrow K=\frac{4}{3}$$
.

L'unique solution f de l'équation différentielle (E) sur \mathbb{R} telle que f(0)=0 est définie par :

$$f(x) = \frac{4}{3}e^{\frac{3}{2}x} - \frac{4}{3}$$
.

3. Affirmation 5: VRAIE

Preuve

$$f'(x) = \frac{4}{3} \times \frac{3}{2} e^{\frac{3}{2}x} = 2e^{\frac{3}{2}x}$$

$$f'(1)=2e^{\frac{3}{2}}$$

Le coefficient directeur de la tangente à \mathcal{C}_f au point d'abscisse 1 est $2e^{\frac{3}{2}}$.