

Exercice 1

L'exercice est constitué de deux parties indépendantes

Partie 1

On considère l'équation différentielle

(E):
$$y' - y = e^{-x}$$

- 1. Soit u la fonction définie sur \mathbb{R} par $u(x)=xe^{-x}$. Vérifier que la fonction u est une solution de l'équation différentielle (E).
- 2. On considère l'équation différentielle

$$(E'): y'+y=0$$

Résoudre l'équation différentielle (E') sur \mathbb{R} .

- 3. En déduire toutes les solutions de l'équation différentielle (E) sur R.
- **4.** Déterminer l'unique solution g de l'équation différentielle (E) telle que g(0)=2.

Partie 2

Dans cette partie, k est un nombre réel fixé que l'on cherche à déterminer.

On considère la fonction f_k définie sur \mathbb{R} par : $f_k(x) = (x+k)e^{-x}$.

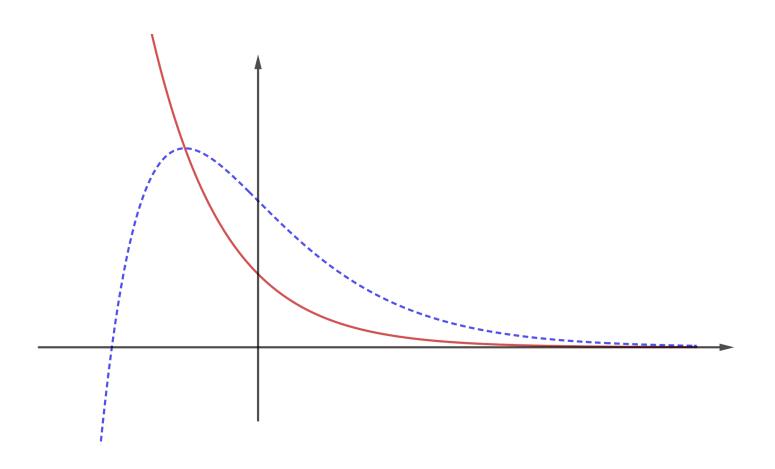
Soit h la fonction définie sur \mathbb{R} par $h(x)=e^{-x}$.

On note \mathcal{C}_k la courbe représentative de la fonction f_k dans un repère orthogonal et \mathcal{C} la courbe représentative de h.

On a représenté sur un graphique en annexe les courbes \mathscr{C}_k et \mathscr{C} sans indiquer les unités sur les axes et le nom des courbes.

- 1. Sur le graphique en annexe à rendre avec la copie, l'une des courbes est en traits pointillés, l'autre en trait plein. Laquelle est la courbe \mathscr{C} ?
- 2. En expliquant la démarche utilisée, déterminer la valeur du nombre réel k et placer sur l'annexe à rendre avec la copie l'unité sur chacun des axes du graphique.

ANNEXE à rendre avec la copie



CORRECTION

Partie 1

- 1. $(e^{-x})' = -e^{-x}$ donc $u'(x) = 1 \times e^{-x} + x \times (-e^{-x}) = e^{-x} x e^{-x}$. Pour tout nombre réel x $u'(x) + u(x) = e^{-x} - x e^{-x} + x e^{-x} = e^{-x}$ donc u est une solution particulière de l'équation (E).
- L'ensemble des solutions de l'équation différentielle linéaire, homogène: y'+a y=0 (a≠0) est l'ensemble des fonctions f_λ (λ est un nombre réel) telle que, pour tout nombre réel x: f_λ(x)=λe^{-ax}.

Donc l'ensemble des solutions de l'équation différentielle (E') est l'ensemble des fonctions f_{λ} (λ nombre réel) telle que pour tout réel x $f_{\lambda}(x) = \lambda e^{-x}$, car a = 1.

- **3.** u étant une solution particulière de (E) donc l'ensemble des solutions de (E) est l'ensemble des fonctions g_{λ} (λ nombre réel) telle que, pour tout nombre réel x: $g_{\lambda}(x) = \lambda e^{-x} + xe^{-x} = (x+\lambda)e^{-x}$.
- 4. $g_{\lambda}(0) = (0+\lambda)e^{0} = \lambda \times 1 = \lambda$ $g_{\lambda}(0) = 2 \Leftrightarrow \lambda = 2$

L'unique solution g de l'équation différentielle (E) vérifiant la condition initiale g(x)=2 est la fonction g_2 c'est à dire pour tout entier nombre réel $x: g(x)=(x+2)e^{-x}$.

Partie 2

- 1. Pour tout nombre réel x, $h(x)=e^{-x}$ donc $h'(x)=-e^{-x}<0$; Donc h est strictement décroissante sur \mathbb{R} et \mathscr{C} est la courbe en trait plein sur le graphique.
- 2. $h(0)=e^0=1$ donc le point A d'intersection de $\mathscr C$ et l'axe des ordonnées à pour coordonnées (0;1). L'unité sur l'axe des ordonnées est OA=1.

D est le point d'intersection de la courbe \mathscr{C}_k et de l'axe des ordonnées.

On trace le cercle de centre A et passant par O (de rayon 1), ce cercle passe par D et OD=2. Donc D(0;2) et $g_k(0)=2$ \Leftrightarrow k=2.

La courbe tracée en traits pointillés est la courbe \mathcal{C}_2 .

C est le point d'intersection des courbes \mathscr{C} et \mathscr{C}_2 .

 $h(x) = g_2(x) \Leftrightarrow e^{-x} = (x+2)e^{-x} \Leftrightarrow 0 = (x+1)e^{-x} \Leftrightarrow x = -1 \text{ (car } e^{-x} \neq 0 \text{)}.$

L'abscisse du point C est égale à -1.

On trace le cercle de centre O passant par B (et A), le deuxième point d'intersection de ce cercle et l'axe des abscisses est E(1;0).

L'unité sur l'axe des abscisses est OE=1.

ANNEXE à rendre avec la copie

